首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When cells of Bacillus sp. strain GL1 were grown in a medium containing xanthan as a carbon source, alpha-mannosidase exhibiting activity toward p-nitrophenyl-alpha-D-mannopyranoside (pNP-alpha-D-Man) was produced intracellularly. The 350-kDa alpha-mannosidase purified from a cell extract of the bacterium was a trimer comprising three identical subunits, each with a molecular mass of 110 kDa. The enzyme hydrolyzed pNP-alpha-D-Man (Km = 0.49 mM) and D-mannosyl-(alpha-1,3)-D-glucose most efficiently at pH 7.5 to 9.0, indicating that the enzyme catalyzes the last step of the xanthan depolymerization pathway of Bacillus sp. strain GL1. The gene for alpha-mannosidase cloned most by using N-terminal amino acid sequence information contained an open reading frame (3,144 bp) capable of coding for a polypeptide with a molecular weight of 119,239. The deduced amino acid sequence showed homology with the amino acid sequences of alpha-mannosidases belonging to glycoside hydrolase family 38.  相似文献   

2.
Evidence for an alpha-mannosidase in endoplasmic reticulum of rat liver   总被引:24,自引:0,他引:24  
An alpha-mannosidase activity has been identified in a preparation of rat liver endoplasmic reticulum and shown to be distinct from the previously described Golgi alpha-mannosidases I and II and the lysosomal alpha-mannosidase. The enzyme was solubilized with deoxycholate and separated from other alpha-mannosidases by passage over concanavalin A-Sepharose to which it does not bind. The endoplasmic reticulum alpha-mannosidase cleaves alpha-1,2-linked mannoses from high mannose oligosaccharides and, unlike Golgi alpha-mannosidase I, is active against p-nitrophenyl-alpha-D-mannoside (Km = 0.17 mM). It has no activity toward GlcNAc-Man5GlcNAc2 peptide, the specific substrate of the Golgi alpha-mannosidase II. The endoplasmic reticulum alpha-mannosidase activity toward p-nitrophenyl-alpha-D-mannoside is relatively insensitive to swainsonine, an inhibitor of both the lysosomal alpha-mannosidase and Golgi alpha-mannosidase II. We propose that the endoplasmic reticulum alpha-mannosidase is responsible for the removal of mannose residues from asparagine-linked high mannose type oligosaccharides prior to their entry into the Golgi.  相似文献   

3.
Galactosylceramide β-galactosidase (EC 3.2.1.46) has been partially purified from liver of a patient who died of Krabbe disease. Approximately 700-fold purification was achieved by solubilization, adsorption with immobilized concanavalin A, gel filtration through Bio-Gel A-1.5m and chromatography on immobilized sphingosine. The relative increase in crossreacting material and residual galactosylceramidase and lactosylceramidase I activities of the mutant enzyme was essentially identical to that obtained for the enzyme partially purified by the same procedure from normal liver control. An apparent molecular weight of about 750,000 and similar electrophoretic mobilities were observed for both enzymes. In contrast, catalytic properties and stability of the enzyme protein were severely affected in the mutant as compared to the normal enzyme. The apparent Km values of the mutant enzyme for β-galactosidase activities toward galactosylceramide and lactosylceramide in the presence of pure sodium taurocholate were 14 and 4 times, respectively, higher than the normal values. Incubation for 4 min at 52 °C or dialysis against 1.3 m urea caused a 50% loss of residual enzymatic activity of the mutant enzyme, whereas a 35-min incubation or dialysis against 5.6 m urea was required for 50% inactivation of the normal enzyme. These findings indicate that the mutation in Krabbe disease leads to synthesis of normal quantities of catalytically and structurally altered protein.  相似文献   

4.
alpha-Mannosidase of Medicago sativa (alfalfa) was purified 1340-fold. The purification method included dialysis of the crude extract against a citrate/phosphate buffer, pH 3.9, (NH4)SO4 precipitation, hydroxyapatite chromatography, chromatography on Sephadex G-200 and finally a preparatory electrophoresis on polyacrylamide-gel gradient by Doly & Petek's [(1977) J. Chromatogr. 137. 69--81] method. Each step of purification was checked by polyacrylamide-gel disc electrophoresis. The purified enzyme showed a single band, corresponding to alpha-mannosidase activity. alpha-Mannosidase has a mol.wt. 230 000 as estimated by Hedrick & Smith's [(1968) Arch. Biochem. Biophys. 126, 155--164] method and also by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate by Weber & Osborn [(1969) J. Biol. Chem. 244, 4406--4412]. The enzyme comprises four subunits of different molecular weight. Optimum pH and Km values were determined with p-nitrophenyl alpha-D-mannoside as substrate. When incubated at a temperature between 20 and 62 degrees C before assay, alpha-mannosidase initially shows an increase in activity. alpha-Mannosidase is stable when the pH is about neutrality. It can be inactivated by several metal ions, including Zn2+. At a pH below 5 the enzyme undergoes irreversible inactivation. The presence of EDTA at acid pH considerably enhances the inactivation of the enzyme. This inactivation due to EDTA can be specifically reversed by incubation with Zn2+.  相似文献   

5.
We have isolated a cDNA encoding an endoplasmic reticulum alpha-mannosidase, an asparagine-linked oligosaccharide processing enzyme, from a rat liver lambda gt11 library. Two degenerate oligonucleotides, based on amino acid sequence data from the purified enzyme, were used as primers in the polymerase chain reaction with liver cDNA as a template to generate an unambiguous cDNA probe. The cDNA fragment (524 base pair) obtained was then used to isolate cDNA clones by hybridization. We isolated two overlapping clones which were used to construct a full-length cDNA of 3392 base pairs. A single open reading frame of 1040 amino acids encodes a protein with a molecular mass of 116 kilodaltons containing the six known peptide sequences. The deduced amino acid sequence revealed no classical signal sequence or membrane-spanning domain. The alpha-mannosidase encoding cDNA can be expressed transiently in COS cells using the mammalian expression vector pXM, causing a 400-fold increase in alpha-mannosidase activity as well as a dramatic increase in immunoreactive polypeptide. The rat liver endoplasmic reticulum alpha-mannosidase bears striking homology to the vacuolar alpha-mannosidase from Saccharomyces cerevisiae.  相似文献   

6.
Acid and neutral alpha-mannosidase activities were studied in the bull reproductive tissues, isolated spermatozoa, epididymal and seminal vesicle secretion and seminal plasma. The acid enzyme in the seminal plasma mainly derived from the epididymal secretion, while the neutral one was enriched in the sperm cells. The latter activity in the seminal plasma appears to be due to an enzyme released from the cytoplasmic droplets in the epididymis. The acid enzyme had a molecular weight of 220,000-320,000, pI 7.3-6.0 and an optimum at pH 4.0. It was sensitive to swainsonine but was stimulated by Zn2+. The neutral enzyme had a molecular weight of 360,000-460,000, pI 5.4-4.7 and showed double optima at pH 5.5 and 6.0-7.0. It was resistant to swainsonine but was markedly activated by Co2+ or Fe2+. The neutral enzyme was also more sensitive to thermal inactivation than the acid one.  相似文献   

7.
Dictyostelium discoideum strain HMW-426 has been previously shown to be defective in the proteolytic processing of the lysosomal enzyme precursor to alpha-mannosidase. We have now shown that the mutant is defective in the proteolytic processing of a second lysosomal enzyme, beta-glucosidase. Digestion of the HMW-426 alpha-mannosidase and beta-glucosidase precursors with endoglycosidase H revealed that the majority of oligosaccharide side chains on both precursors were sensitive to cleavage by this enzyme, indicating that both precursors fail to reach the Golgi apparatus. Subcellular fractionation experiments demonstrated that these two mutant precursors accumulated inside the lumen of the rough endoplasmic reticulum. The alpha-mannosidase precursor is conformationally altered, as evidenced by its abnormal protease susceptibility, suggesting that altered conformation is responsible for a generalized defect in transport of lysosomal protein precursors from the rough endoplasmic reticulum in the mutant.  相似文献   

8.
The soluble alpha-mannosidase of rat liver, originally described as a cytoplasmic alpha-mannosidase, has been purified to homogeneity by conventional techniques. The purified enzyme has an apparent molecular weight of 350,000 and is composed of 107-kDa subunits. The soluble alpha-mannosidase has the same enzymatic properties as the endoplasmic reticulum (ER) membrane alpha-mannosidase of rat liver (Bischoff, J., and Kornfeld, R. (1983) J. Biol. Chem. 258, 7909-7910) which is believed to play a role in oligosaccharide processing in the rough ER. Like the membrane-bound ER alpha-mannosidase, the soluble alpha-mannosidase can hydrolyze alpha-linked mannose from both p-nitrophenyl alpha-mannoside (Km = 0.14 mM) and high mannose oligosaccharides, is not inhibited by the mannose analogues swainsonine and 1-deoxymannojirimycin, is stabilized by MnCl2 or CoCl2, and does not bind to concanavalin A-Sepharose. A goat polyclonal antibody raised against the purified soluble alpha-mannosidase specifically recognizes the rat liver membrane-bound ER alpha-mannosidase, leading us to propose that they are two forms of the same enzyme and that the soluble form is derived from the ER membrane alpha-mannosidase by proteolysis. The antibody also cross-reacts with both the soluble and membrane-bound forms of ER alpha-mannosidase activity in cultured Chinese hamster ovary cells and rat H35 hepatoma cells. Since the ER alpha-mannosidase is presumed to be involved in the early steps of oligosaccharide processing, the action of the purified soluble form of the enzyme on high mannose oligosaccharides was examined. Surprisingly, the enzyme released free mannose from oligosaccharides ranging in size from Glc1Man9GlcNAc to Man5GlcNAc with almost equal efficiency. However, a long term incubation of the enzyme with Man9GlcNAc led to the accumulation of Man7GlcNAc and produced only small amounts of Man6GlcNAc and Man5GlcNAc. Structural analysis of these reaction products indicated that the purified soluble form of ER alpha-mannosidase shows little specificity for which mannose residues it removes from Man9GlcNAc. In contrast, as shown in the accompanying paper, the intracellular action of ER alpha-mannosidase on glycoprotein-bound Man9GlcNAc2 is highly specific.  相似文献   

9.
A soluble form of the specific alpha-mannosidase from Saccharomyces cerevisiae, which catalyzes the following reaction, was purified at least 100,000-fold by conventional chromatography procedures: (Formula: see text). The purified enzyme migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band of about 60 kDa in the absence of reducing agent, and as two bands of about 44.5 kDa and 22.5 kDa in the presence of reducing agent. The apparent molecular weight of the soluble enzyme is about 75,000 by gel filtration on Sephacryl S-200. The specific alpha-mannosidase does not require the addition of divalent cation for activity, but it is inhibited by Tris, EDTA, Mn2+, Co2+, Zn2+, and Mg2+. The inhibition caused by EDTA can be reversed completely by Ca2+ and partially by Mg2+, but not by other divalent cations. The soluble alpha-mannosidase arises from a larger hydrophobic form of the enzyme which is found in the detergent phase during partition in Triton X-114. The formation of the soluble enzyme, which is recovered in the aqueous phase during partition in Triton X-114, is time- and temperature-dependent and is prevented by pepstatin, but not by other protease inhibitors. These results indicate that the purified soluble alpha-mannosidase represents the catalytically active domain of the enzyme which has been proteolytically released from its membrane-bound form.  相似文献   

10.
Fractionation of a crude extract from Saccharomyces cerevisiae X-2180 on Sepharose 6B in the presence of 0.5% Triton X-100 resolves two enzyme fractions containing alpha-mannosidase activity. Fraction I which is excluded from the gel contains alpha-mannosidase activity toward both p-nitrophenyl-alpha-D-mannopyranoside and Man9GlcNAc oligosaccharide as substrates, whereas Fraction II which is included in the gel contains only oligosaccharide alpha-mannosidase activity. The latter enzyme is very specific and removes a single mannose residue from Man9GlcNAc, whereas the alpha-mannosidase activity of Fraction I removes several mannose residues from Man9GlcNAc oligosaccharide. High resolution 1H NMR analysis of the Man8GlcNAc formed from Man9GlcNAc in the presence of the alpha-mannosidase of Fraction II showed only a single isomer with the following structure: (see formula; see text) This specific enzyme is most probably involved in processing of oligosaccharide during biosynthesis of mannoproteins. The mannose analog of 1-deoxynojirimycin (50-500 microM), dideoxy-1,5-imino-D-mannitol, inhibits the oligosaccharide alpha-mannosidase activities of Fractions I and II to about the same extent, but has no effect on the nonspecific alpha-mannosidase which acts on p-nitrophenyl-alpha-D-mannopyranoside.  相似文献   

11.
The acid alpha-mannosidase of Trypanosoma cruzi is a broad-specificity hydrolase involved in the catabolism of glycoconjugates, presumably in the digestive vacuole. We have cloned the alpha-mannosidase gene from a T.cruzi epimastigote genomic library. The alpha-mannosidase gene was determined to be single copy by Southern analysis, and similar sequences were not detected in genomic digests of either Trypanosoma brucei or Leishmania donovani. The coding region was subcloned into the Pichia pastoris expression vector pPICZ, and alpha-mannosidase activity was detected in the medium of induced cultures. The recombinant alpha- mannosidase demonstrated a pH optimum, inhibition by swainsonine, Km, and substrate specificity consistent with the characteristics of the alpha-mannosidase previously purified from T.cruzi epimastigotes. The recombinant enzyme was purified 103-fold from the culture medium of Pichia pastoris and had a native molecular mass of 359 kDa by gel filtration. A combination of SDS-PAGE, deglycosylation with endo H, and NH2-terminal sequencing indicates that the enzyme is originally synthesized as a homodimeric polypeptide that is subsequently cleaved to form a heterotetramer composed of 57 and 46 kDa subunits. A polyclonal antibody raised to the recombinant enzyme was shown to immunoprecipitate the alpha-mannosidase from T.cruzi cell extracts and will be used in future immunolocalization studies.   相似文献   

12.
Palenchar JB  Colman RF 《Biochemistry》2003,42(7):1831-1841
Adenylosuccinate lyase, an enzyme catalyzing two reactions in purine biosynthesis (the cleavage of either adenylosuccinate or succinylaminoimidazole carboxamide ribotide), has been implicated in a human disease arising from point mutations in the gene encoding the enzyme. Asn(276) of Bacillus subtilis adenylosuccinate lyase, a residue corresponding to the location of a human enzyme mutation, was replaced by Cys, Ser, Ala, Arg, and Glu. The mutant enzymes exhibit decreased V(max) values (2-400-fold lower) for both substrates compared to the wild-type enzyme and some changes in the pH dependence of V(max) but no loss in affinity for adenylosuccinate. Circular dichroism reveals no difference in secondary structure between the wild-type and mutant enzymes. We show here for the first time that wild-type adenylosuccinate lyase exhibits a protein concentration dependence of molecular weight, secondary structure, and specific activity. An equilibrium constant between the dimer and tetramer was measured by light scattering for the wild-type and mutant enzymes. The equilibrium is somewhat shifted toward the tetramer in the mutant enzymes. The major difference between the wild-type and mutant enzymes appears to be in quaternary structure, with many mutant enzymes exhibiting marked thermal instability relative to the wild-type enzyme. We propose that mutations at position 276 result in structurally impaired adenylosuccinate lyases which are assembled into defective tetramers.  相似文献   

13.
1. Two methods were used to obtain alpha-mannosidase free from unbound Zn2+, (a) by removal of excess of metal ion from preparations purified in the presence of Zn2+ and (b) by purification under conditions that eliminate the need to add Zn2+. 2. The purified enzyme is homogeneous on ultracentrifugation, polyacrylamide-gel electrophoresis and gel chromatography. 3. The molecular weight is estimated to be 230 000. 4. The enzyme contains between 470 and 565 mug of zinc/g of protein, corresponding to between 1.7 and 2 atoms of zinc/enzyme molecule. The contents of other metals are much lower. 5. The enzyme is inactivated by chelating agents and activity is restored by Zn2+. 6. No other metal ion was found to replace Zn2+ with retention of activity. Some bivalent metal ions, e.g. Cu2+, rapidly inactivate the enzyme. 7. The results indicate that jack-bean alpha-mannosidase exists naturally as a zinc-protein complex and may be considered as a metalloenzyme.  相似文献   

14.
An alpha-mannosidase was purified from developing Ginkgo biloba seeds to apparently homogeneity. The molecular weight of the purified alpha-mannosidase was estimated to be 120 kDa by SDS-PAGE in the presence of 2-mercaptoethanol, and 340 kDa by gel filtration, indicating that Ginkgo alpha-mannosidase may function in oligomeric structures in the plant cell. The N-terminal amino acid sequence of the purified enzyme was Ala-Phe-Met-Lys-Tyr-X-Thr-Thr-Gly-Gly-Pro-Val-Ala-Gly-Lys-Ile-Asn-Val-His-Leu-. The alpha-mannosidase activity for Man(5)GlcNAc(1) was enhanced by the addition of Co(2+), but the addition of Zn(2+), Ca(2+), or EDTA did not show any significant effect. In the presence of cobalt ions, the hydrolysis rate for pyridylaminated Man(6)GlcNAc(1) was significantly faster than that for pyridylaminated Man(6)GlcNAc(2), suggesting the possibility that this enzyme is involved in the degradation of free N-glycans occurring in developing plant cells (Kimura, Y., and Matsuo, S., J. Biochem., 127, 1013-1019 (2000)). To our knowledge, this is the first report showing that plant cells contain an alpha-mannosidase, which is activated by Co(2+) and prefers the oligomannose type free N-glycans bearing only one GlcNAc residue as substrate.  相似文献   

15.
《The Journal of cell biology》1989,109(4):1445-1456
A mutant strain of Dictyostelium discoideum, HMW570, oversecretes several lysosomal enzyme activities during growth. Using a radiolabel pulse-chase protocol, we followed the synthesis and secretion of two of these enzymes, alpha-mannosidase and beta-glucosidase. A few hours into the chase period, HMW570 had secreted 95% of its radiolabeled alpha- mannosidase and 86% of its radiolabeled beta-glucosidase as precursor polypeptides compared to the secretion of less than 10% of these forms from wild-type cells. Neither alpha-mannosidase nor beta-glucosidase in HMW570 were ever found in the lysosomal fractions of sucrose gradients consistent with HMW570 being defective in lysosomal enzyme targeting. Also, both alpha-mannosidase and beta-glucosidase precursors in the mutant strain were membrane associated as previously observed for wild- type precursors, indicating membrane association is not sufficient for lysosomal enzyme targeting. Hypersecretion of the alpha-mannosidase precursor by HMW570 was not accompanied by major alterations in N- linked oligosaccharides such as size, charge, and ratio of sulfate and phosphate esters. However, HMW570 was defective in endocytosis. A fluid phase marker, [3H]dextran, accumulated in the mutant at one-half of the rate of wild-type cells and to only one-half the normal concentration. Fractionation of cellular organelles on self-forming Percoll gradients revealed that the majority of the fluid-phase marker resided in compartments in mutant cells with a density characteristic of endosomes. In contrast, in wild-type cells [3H]dextran was predominantly located in vesicles with a density identical to secondary lysosomes. Furthermore, the residual lysosomal enzyme activity in the mutant accumulated in endosomal-like vesicles. Thus, the mutation in HMW570 may be in a gene required for both the generation of dense secondary lysosomes and the sorting of lysosomal hydrolases.  相似文献   

16.
We have identified three developmentally regulated oligosaccharide-processing enzyme activities in Dictyostelium discoideum. Two different alpha-mannosidase activities present at extremely low levels in vegetative cells are expressed during development. The first of these activities (MI) rises sharply from 6 to 12 h of development whereas the second activity (MII) rises sharply from 12 to 18 h of development. MI acts on Man9GlcNAc, which it can degrade to Man5GlcNAc but is inactive toward p-nitrophenyl-alpha-D-mannoside (pnpMan). MII acts on pnpMan but not Man9GlcNAc. These activities are distinct from each other and from lysosomal alpha-mannosidase activity as demonstrated by pH optima, substrate specificity, sensitivity to inhibitors and divalent cations, developmental profiles, and solubility. The characteristics of these developmentally regulated alpha-mannosidase activities are similar to those of Golgi alpha-mannosidases I and II from higher eucaryotes, and they appear to catalyze the in vivo formation of processed asparagine-linked oligosaccharides by developed cells. In addition, developed cells have very low levels of a soluble alpha-mannosidase activity, which is the predominant activity in vegetative cells. This soluble vegetative alpha-mannosidase activity has properties that are reminiscent of the endoplasmic reticulum alpha-mannosidase from rat liver. The intersecting N-acetylglucosaminyltransferase activity that we have described recently in vegetative cells of D. discoideum (Sharkey, D. J., and Kornfeld, R. (1989) J. Biol. Chem. 264, 10411-10419) has a developmental profile that is distinct from that of either of the alpha-mannosidase activities. It has maximum activity at 6 h of development and decreases sharply to its minimum level by 12 h of development. The changes that occur in the levels of these three processing enzymes with development correlate well with the different arrays of asparagine-linked oligosaccharides found in early and late stages of development (Sharkey, D. J., and Kornfeld, R. (1991) J. Biol. Chem. 266, 18485-18497).  相似文献   

17.
18.
The specific activities of the enzymes alpha-mannosidase and N-acetylglucosaminidase increase immediately after the initiation of the development of bacterially grown cell cultures of Dictyostelium discoideum. The regulation of these two enzymes was found to be dissociable in the developmental timer mutant, FM-1, which aggregates 4.5 h earlier than wild-type cells due to the absence of the first rate-limiting component of the preaggregative period. The increase in alpha-mannosidase activity occurs in the absence of the first rate-limiting component, but the increase in N-acetylglucosaminidase activity does not. These results indicate the following: (1) the increase in the specific activity of alpha-mannosidase is not related to the timing of subsequent developmental stages; (2) the increase in the specific activity of N-acetylglucosaminidase is not necessary for the subsequent developmental program; and (3) either the increase in the specific activity of N-acetylglucosaminidase is dependent upon progress through the first rate-limiting component, or the increase in this enzyme activity and the first rate-limiting component are both dependent upon an early event for which FM-1 is defective. In addition to early development, we monitored the two enzyme activities during dedifferentiation. The results demonstrate that there is no difference between dedifferentiating wild-type cells and dedifferentiation-defective mutant HI-4 cells. Changes in enzyme specific activity accompanying dedifferentiation are dependent upon the composition of the dedifferentiation-inducing media and are consistent with the levels of these enzymes observed in cells growing in the different nutrient media.  相似文献   

19.
A protein with poly(A) polymerase activity has been identified and isolated from hepatic nuclear envelopes of rats to near homogeneity. The ability of the enzyme to bind to concanavalin A-agarose and to be eluted from the column with methyl alpha-D-mannopyranoside (0.2 M) as well as the inhibitory effects of alpha-mannosidase suggested that it was a glycoprotein. Poly(A) polymerase has an absolute requirement for a divalent cation, ATP, and an oligonucleotide primer. The enzyme activity with Mn2+ was about 20-fold higher than that with Mg2+. Several known inhibitors adversely affected poly(A) polymerase activity. The enzyme has a molecular weight of 64,000 when analyzed by polyacrylamide gel electrophoresis under denaturing conditions and has a sedimentation coefficient of 4.5 S. Immunohistochemical studies using polyclonal antibodies raised against the purified enzyme revealed that the antigen was localized in the nuclear membranes.  相似文献   

20.
The mutant IP7 of Escherichia coli B requires isoleucine or pyridoxine for growth as a consequence of a mutation in the gene coding for biosynthetic threonine deaminase. The mutation of IP7 was shown to be of the nonsense type by the following data: (1) reversion to isoleucine prototrophy involves the formation of external suppression at a high frequency, as shown by transduction experiments; and (ii) the isoleucine requirement is suppressed by lysogenization with a phage carrying the amber suppressor su-3. Cell extracts of the mutant strain contain a low activity of threonine deaminase. The possibility that this activity is biodegradative was ruled out by kinetic experiments. The mutant threonine deaminase was purified to homogeneity by conventional procedures. The enzyme is a dimer of identical subunits of an approximate molecular weight of 43,000 (Grimminger and Feldner, 1974), whereas the wild-type enzyme is a tetramer of 50,000-dalton subunits (Calhoun et al., 1973; Grimminger et al., 1973). The mutant enzyme is not inhibited by isoleucine and does not bind isoleucine, as shown by equilibrium dialysis experiments. Pyridoxal phosphate enhances the maximum catalytic activity of the mutant enzyme by a factor of five, whereas the wild-type enzyme is not affected. In wild-type and mutant threonine deaminase the ratio of protein subunits and bound pyridoxal phosphate is 2:1. The activation of threonine deaminase from strain IP7 is due to a second coenzyme binding site, as shown by (i) spectrophotometric titration of the enzyme with pyridoxal phosphate and by (ii) measurement the pyridoxal phosphate content of the enzyme after sodium borohydride reduction of the protein. The observation of one pyridoxal phosphate binding site per peptide dimer in the wild-type enzyme and of two binding sites per dimer in the mutant strongly suggests that one of the potential sites in the wild-type enzyme is masked by allosteric effects. The factors responsible for the half-of-the-sites reactivity of the coenzyme sites appear to be nonoperative in the mutant protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号