首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transforming growth factor-beta (TGF-beta) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF-beta signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF-beta target genes, suggest that Smad2 and Smad3 have distinct roles in TGF-beta signaling. The observation that TGF-beta inhibits proliferation of Smad3-null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3-mediated TGF-beta signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF-beta signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF-beta signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF-beta response may translate into developing more effective strategies for cancer therapy.  相似文献   

3.
4.
5.
6.
BACKGROUND/AIMS: Profibrogenic TGF-beta signaling in hepatic stellate cells is modulated during transdifferentiation. Strategies to abrogate TGF-beta effects provide promising antifibrotic results, however, in vivo data regarding Smad activation during fibrogenesis are scarce. METHODS: Here, liver fibrosis was assessed subsequent to bile duct ligation by determining liver enzymes in serum and collagen deposition in liver tissue. Activated hepatic stellate cells were identified by immunohistochemistry and immunoblots for alpha smooth muscle actin. Cellular localization of Smad3 and Smad7 proteins was demonstrated by immunohistochemistry. RTPCR for Smad4 and Smad7 was conducted with total RNA and Northern blot analysis for Smad7 with mRNA. Whole liver lysates were prepared to detect Smad2/3/4 and phospho- Smad2/3 by Western blotting. RESULTS: Cholestasis induces TGF-beta signaling via Smad3 in vivo, whereas Smad2 phosphorylation was only marginally increased. Smad4 expression levels were unchanged. Smad7 expression was continuously increasing with duration of cholestasis. Hepatocytes of fibrotic lesions exhibited nuclear staining Smad3. In contrast to this, Smad7 expression was localized to activated hepatic stellate cells. CONCLUSIONS: Hepatocytes of damaged liver tissue display increased TGF-beta signaling via Smad3. Further, negative feedback regulation of TGF-beta signaling by increased Smad7 expression in activated hepatic stellate cells occurs, however does not interfere with fibrogenesis.  相似文献   

7.
8.
9.
10.
11.
Herein, we hypothesized that pro‐osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR‐29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT‐PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR‐29b and TGF‐β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR‐29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR‐29b inhibition. TGF‐β3 was markedly downregulated while Smad3, Runx2, wnt3, and β‐catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR‐29b overexpression while the inhibition of miR‐29b showed the inverse trends. Moreover, TGF‐β3 was a direct target of miR‐29b. Inhibition of miR‐29b hinders valvular calcification through the upregulation of the TGF‐β3 via inhibition of wnt/β‐catenin and RUNX2/Smad3 signaling pathways.  相似文献   

12.
13.
14.
Smad proteins are principal intracellular signaling mediators of transforming growth factor beta (TGF-beta) that regulate a wide range of biological processes. However, the identities of Smad partners mediating TGF-beta signaling are not fully understood. We firstly examined the expression of Smad2 and Smad3 induced by TGF-beta 1 in normal NIH/3T3 cells. The expression of Smad2 and Smad3 was assessed by RT-PCR and Western blotting. The results showed that the expression of Smad2 was increased after treatment with TGF-betaI, but Smad3 was more sensitive to TGF-betaI than Smad2. RNA interference (RNAi) provides a new approach for elucidation of gene function. Use of hairpin siRNA expression vectors for RNAi has provided a rapid and versatile method for assessing gene function in mammalian cells. Here, we have constructed Smad2 and Smad3 hairpin siRNA expression plasmids, and then transfected them into mouse NIH/3T3 cells. Endogenous Smad2 and Smad3 proteins decreased significantly at 48 h after transfection. We found the expression of Smad3 in Smad2-depleted cells was increased, however, the expression of Smad2 in Smad3-depleted cells was not changed. Consistently, the expression of Smad4 mRNA was also attenuated in Smad3-depleted cells. From these data, we suggest that Smad3, but not Smad2, may play a key role in TGF-beta signaling.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号