首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the influence of cross-bridge cycling kinetics on the length dependence of steady-state force and the rate of force redevelopment (k(tr)) during Ca(2+)-activation at sarcomere lengths (SL) of 2.0 and 2.3 microm in skinned rat cardiac trabeculae. Cross-bridge kinetics were altered by either replacing ATP with 2-deoxy-ATP (dATP) or by reducing [ATP]. At each SL dATP increased maximal force (F(max)) and Ca(2+)-sensitivity of force (pCa(50)) and reduced the cooperativity (n(H)) of force-pCa relations, whereas reducing [ATP] to 0.5 mM (low ATP) increased pCa(50) and n(H) without changing F(max). The difference in pCa(50) between SL 2.0 and 2.3 microm (Delta pCa(50)) was comparable between ATP and dATP, but reduced with low ATP. Maximal k(tr) was elevated by dATP and reduced by low ATP. Ca(2+)-sensitivity of k(tr) increased with both dATP and low ATP and was unaffected by altered SL under all conditions. Significantly, at equivalent levels of submaximal force k(tr) was faster at short SL or increased lattice spacing. These data demonstrate that the SL dependence of force depends on cross-bridge kinetics and that the increase of force upon SL extension occurs without increasing the rate of transitions between nonforce and force-generating cross-bridge states, suggesting SL or lattice spacing may modulate preforce cross-bridge transitions.  相似文献   

2.
Strongly bound, force-generating myosin cross-bridges play an important role as allosteric activators of cardiac thin filaments. Sodium vanadate (Vi) is a phosphate analog that inhibits force by preventing cross-bridge transition into force-producing states. This study characterizes the mechanical state of cross-bridges with bound Vi as a tool to examine the contribution of cross-bridges to cardiac contractile activation. The K(i) of force inhibition by Vi was approximately 40 microM. Sinusoidal stiffness was inhibited with Vi, although to a lesser extent than force. We used chord stiffness measurements to monitor Vi-induced changes in cross-bridge attachment/detachment kinetics at saturating [Ca(2+)]. Vi decreased chord stiffness at the fastest rates of stretch, whereas at slow rates chord stiffness actually increased. This suggests a shift in cross-bridge population toward low force states with very slow attachment/detachment kinetics. Low angle x-ray diffraction measurements indicate that with Vi cross-bridge mass shifted away from thin filaments, implying decreased cross-bridge/thin filament interaction. The combined x-ray and mechanical data suggest at least two cross-bridge populations with Vi; one characteristic of normal cycling cross-bridges, and a population of weak-binding cross-bridges with bound Vi and slow attachment/detachment kinetics. The Ca(2+) sensitivity of force (pCa(50)) and force redevelopment kinetics (k(TR)) were measured to study the effects of Vi on contractile activation. When maximal force was inhibited by 40% with Vi pCa(50) decreased, but greater force inhibition at higher [Vi] did not further alter pCa(50). In contrast, the Ca(2+) sensitivity of k(TR) was unaffected by Vi. Interestingly, when force was inhibited by Vi k(TR) increased at submaximal levels of Ca(2+)-activated force. Additionally, k(TR) is faster at saturating Ca(2+) at [Vi] that inhibit force by > approximately 70%. The effects of Vi on k(TR) imply that k(TR) is determined not only by the intrinsic properties of the cross-bridge cycle, but also by cross-bridge contribution to thin filament activation.  相似文献   

3.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   

4.
The effects of the nitric oxide (NO) donor spermine NONOate (Sp-NO, 1.0 mM) on cross-bridge recruitment and cross-bridge cycling kinetics were studied in permeabilized rabbit psoas muscle fibers. Fibers were activated at various Ca2+ concentrations (pCa, negative logarithm of Ca2+ concentration), and the pCa at which force was maximal (pCa 4.0) and approximately 50% of maximal (pCa50 5.6) were determined. Fiber stiffness was determined using 1-kHz sinusoidal length perturbations, and the fraction of cross bridges in the force-generating state was estimated by the ratio of stiffness during maximal (pCa 4.0) and submaximal (pCa 5.6) Ca2+ activation to stiffness during rigor (at pCa 4.0). Cross-bridge cycling kinetics were evaluated by measuring the rate constant for force redevelopment after quick release (by 15% of optimal fiber length, L(o)) and restretch of the fiber to L(o). Exposing fibers to Sp-NO for 10 min reduced force and the fraction of cross bridges in the force-generating state at maximal and submaximal (pCa50) Ca2+ activation. However, the effects of Sp-NO were more pronounced during submaximal Ca2+ activation. Sp-NO also reduced the rate constant for force redevelopment but only during submaximal Ca2+ activation. We conclude that Sp-NO reduces Ca2+ sensitivity by decreasing the number of cross bridges in the strongly bound state and also impairs cross-bridge cycling kinetics during submaximal activation.  相似文献   

5.
H Iwamoto 《Biophysical journal》1995,69(3):1022-1035
The dynamic characteristics of the low force myosin cross-bridges were determined in fully calcium-activated skinned rabbit psoas muscle fibers shortening under constant loads (0.04-0.7 x full isometric tension Po). The shortening was interrupted at various times by a ramp stretch (duration, 10 ms; amplitude, up to 1.8% fiber length) and the resulting tension response was recorded. Except for the earlier period of velocity transients, the tension response showed nonlinear dependence on stretch amplitude; i.e., the magnitude of the tension response started to rise disproportionately as the stretch exceeded a critical amplitude, as in the presence of inorganic phosphate (Pi). This result, as well as the result of stiffness measurement, suggests that the low force cross-bridges similar to those observed in the presence of Pi (presumably A.M.ADP.Pi) are significantly populated during shortening. The critical amplitude of the shortening fibers was greater than that of isometrically contracting fibers, suggesting that the low force cross-bridges are more negatively strained during shortening. As the load was reduced from 0.3 to 0.04 P0, the shortening velocity increased more than twofold, but the amount of the negative strain stayed remarkably constant (approximately 3 nm). This This insensitiveness of the negative strain to velocity is best explained if the dissociation of the low force cross-bridges is accelerated approximately in proportion to velocity. Along with previous reports, the results suggest that the actomyosin ATPase cycle in muscle fibers has at least two key reaction steps in which rate constants are sensitively regulated by shortening velocity and that one of them is the dissociation of the low force A.M.ADP.Pi cross-bridges. This step may virtually limit the rate of actomyosin ATPase turnover and help increase efficiency in fibers shortening at high velocities.  相似文献   

6.
The influence of Ca2+ on isometric force kinetics was studied in skinned rat ventricular trabeculae by measuring the kinetics of force redevelopment after a transient decrease in force. Two protocols were employed to rapidly detach cycling myosin cross-bridges: a large-amplitude muscle length ramp followed by a restretch back to the original length or a 4% segment length step. During the recovery of force, the length of the central region of the muscle was controlled by using a segment marker technique and software feedback control. Tension redevelopment was fit by a rising exponential governed by the rate constant ktr for the ramp/restretch protocol and kstep for the step protocol. ktr and kstep averaged 7.06 s-1 and 15.7 s-1, respectively, at 15 degrees C; neither ktr nor kstep increased with the level of Ca2+ activation. Similar results were found at submaximum Ca2+ levels when sarcomere length control by laser diffraction was used. The lack of activation dependence of ktr contrasts with results from fast skeletal fibers, in which ktr varies 10-fold from low to high activation levels, and suggests that Ca2+ does not modulate the kinetics of cross-bridge attachment or detachment in mammalian cardiac muscle.  相似文献   

7.
The rate and association constants (kinetic constants) which comprise a seven state cross-bridge scheme were deduced by sinusoidal analysis in chemically skinned rabbit psoas muscle fibers at 20 degrees C, 200 mM ionic strength, and during maximal Ca2+ activation (pCa 4.54-4.82). The kinetic constants were then used to calculate the steady state probability of cross-bridges in each state as the function of MgATP, MgADP, and phosphate (Pi) concentrations. This calculation showed that 72% of available cross-bridges were (strongly) attached during our control activation (5 mM MgATP, 8 mM Pi), which agreed approximately with the stiffness ratio (active:rigor, 69 +/- 3%); active stiffness was measured during the control activation, and rigor stiffness after an induction of the rigor state. By assuming that isometric tension is a linear combination of probabilities of cross-bridges in each state, and by measuring tension as the function of MgATP, MgADP, and Pi concentrations, we deduced the force associated with each cross-bridge state. Data from the osmotic compression of muscle fibers by dextran T500 were used to deduce the force associated with one of the cross-bridge states. Our results show that force is highest in the AM*ADP.Pi state (A = actin, M = myosin). Since the state which leads into the AM*ADP.Pi state is the weakly attached AM.ADP.Pi state, we confirm that the force development occurs on Pi isomerization (AM.ADP.Pi --> AM*ADP.Pi). Our results also show that a minimal force change occurs with the release of Pi or MgADP, and that force declines gradually with ADP isomerization (AM*ADP -->AM.ADP), ATP isomerization (AM+ATP-->AM*ATP), and with cross-bridge detachment. Force of the AM state agreed well with force measured after induction of the rigor state, indicating that the AM state is a close approximation of the rigor state. The stiffness results obtained as functions of MgATP, MgADP, and Pi concentrations were generally consistent with the cross-bridge scheme.  相似文献   

8.
This study utilized N-benzyl-p-toluene sulfonamide (BTS), a potent inhibitor of cross-bridge cycling, to measure 1) the relative metabolic costs of cross-bridge cycling and activation energy during contraction, and 2) oxygen uptake kinetics in the presence and absence of myosin ATPase activity, in isolated Xenopus laevis muscle fibers. Isometric tension development and either cytosolic Ca2+ concentration ([Ca2+]c) or intracellular Po2 (PiO2) were measured during contractions at 20 degrees C in control conditions (Con) and after exposure to 12.5 microM BTS. BTS attenuated tension development to 5+/-0.4% of Con but did not affect either resting or peak [Ca2+]c during repeated isometric contractions. To determine the relative metabolic cost of cross-bridge cycling, we measured the fall in PiO2) (DeltaPiO2; a proxy for Vo2) during contractions in Con and BTS groups. BTS attenuated DeltaP(iO2) by 55+/-6%, reflecting the relative ATP cost of cross-bridge cycling. Thus, extrapolating DeltaPiO2 to a value that would occur at 0% tension suggests that actomyosin ATP requirement is approximately 58% of overall ATP consumption during isometric contractions in mixed fiber types. BTS also slowed the fall in PiO2) (time to 63% of overall DeltaPiO2) from 75+/-9 s (Con) to 101+/-9 s (BTS) (P<0.05), suggesting an important role of the products of ATP hydrolysis in determining the Vo2 onset kinetics. These results demonstrate in isolated skeletal muscle fibers that 1) activation energy accounts for a substantial proportion (approximately 42%) of total ATP cost during isometric contractions, and 2) despite unchanged [Ca2+]c transients, a reduced rate of ATP consumption results in slower Vo2 onset kinetics.  相似文献   

9.
10.
G Wang  M Kawai 《Biophysical journal》1996,71(3):1450-1461
The elementary steps surrounding the nucleotide binding step in the cross-bridge cycle were investigated with sinusoidal analysis in rabbit soleus slow-twitch muscle fibers. The single-fiber preparations were activated at pCa 4.40, ionic strength 180 mM, 20 degrees C, and the effects of MgATP (S) and MgADP (D) concentrations on three exponential processes B, C, and D were studied. Our results demonstrate that all apparent (measured) rate constants increased and saturated hyperbolically as the MgATP concentration was increased. These results are consistent with the following cross-bridge scheme: [cross-bridge scheme: see text] where A = actin, M = myosin, S = MgATP, and D = MgADP. AM+S is a collision complex, and AM*S is its isomerized form. From our studies, we obtained K0 = 18 +/- 4 mM-1 (MgADP association constant, N = 7, average +/- sem), K1a = 1.2 +/- 0.3 mM-1 (MgATP association constant, N = 8 hereafter), k1b = 90 +/- 20 s-1 (rate constant of ATP isomerization), k-1b = 100 +/- 9 s-1 (rate constant of reverse isomerization), K1b = 1.0 +/- 0.2 (equilibrium constant of isomerization), k2 = 21 +/- 3 s-1 (rate constant of cross-bridge detachment), k-2 = 14.1 +/- 1.0 s-1 (rate constant of reversal of detachment), and K2 = 1.6 +/- 0.3 (equilibrium constant of detachment). K0 is 8 times and K1a is 2.2 times those in rabbit psoas, indicating that nucleotides bind to cross-bridges more tightly in soleus slow-twitch muscle fibers than in psoas fast-twitch muscle fibers. These results indicate that cross-bridges of slow-twitch fibers are more resistant to ATP depletion than those of fast-twitch fibers. The rate constants of ATP isomerization and cross-bridge detachment steps are, in general, one-tenth to one-thirtieth of those in psoas.  相似文献   

11.
We have formulated a three-compartment model of muscle activation that includes both strong cross-bridge (XB) and Ca(2+)-activated regulatory-unit (RU) mediated nearest-neighbor cooperative influences. The model is based on the tight coupling premise--that XB retain activating Ca(2+) on the thin filament. Using global non-linear least-squares, the model produced excellent fits to experimental steady-state force-pCa and ATPase-pCa data from skinned rat soleus fibers. In terms of the model, nearest-neighbor influences over the range of Ca(2+) required for activation cause the Ca(2+) dissociation rate from regulatory-units (k(off)) to decrease and the cross-bridge association rate (f) to increase each more than ten-fold. Moreover, the rate variations occur in separate Ca(2+) regimes. The energy of activation governing f is strongly influenced by both neighboring RU and XB. In contrast, the energy of activation governing k(off) is less affected by neighboring XB than by neighboring RU. Nearest-neighbor cooperative influences provide both an overall sensitization to Ca(2+) and the well-known steep response of force to free Ca(2+). The apparent sensitivity for Ca(2+)-activation of force and ATPase is a function of cross-bridge kinetic rates. The model and derived parameter set produce simulated behavior in qualitative agreement with steady-state experiments reported in the literature for partial TnC replacement, increased [P(i)], increased [ADP], and MalNEt-S1 addition. The model is an initial attempt to construct a general theory of striated muscle activation-one that can be consistently used to interpret data from various types of muscle manipulation experiments.  相似文献   

12.
The kinetics relating calcium and force in skeletal muscle.   总被引:1,自引:1,他引:1       下载免费PDF全文
The kinetics relating Ca2+ transients and muscle force were examined using data obtained with the photoprotein aequorin in skeletal muscles of the rat, barnacle, and frog. These data were fitted by various models using nonlinear methods for minimizing the least mean square errors. Models in which Ca2+ binding to troponin was rate limiting for force production did not produce good agreement with the observed data, except for a small twitch of the barnacle muscle. Models in which cross-bridge kinetics were rate limiting also did not produce good agreement with the observed data, unless the detachment rate constant was allowed to increase sharply on the falling phase of tension production. Increasing the number of cross-bridge states did not dramatically improve the agreement between predicted and observed force. We conclude that the dynamic relationship between Ca2+ transients and force production in intact muscle fibers under physiological conditions can be approximated by a model in which (a) two Ca2+ ions bind rapidly to each troponin molecule, (b) force production is limited by the rate of formation of tightly bound cross-bridges, and (c) the rate of cross-bridge detachment increases rapidly once tension begins to decline and free Ca2+ levels have fallen to low values after the last stimulus. Such a model can account not only for the pattern of force production during a twitch and tetanus, but also the complex, nonlinear pattern of summation which is observed during an unfused tetanus at intermediate rates of stimulation.  相似文献   

13.
Striated muscle contraction is a highly cooperative process initiated by Ca2+ binding to the troponin complex, which leads to tropomyosin movement and myosin cross-bridge (XB) formation along thin filaments. Experimental and computational studies suggest skeletal muscle fiber activation is greatly augmented by cooperative interactions between neighboring thin filament regulatory units (RU-RU cooperativity; 1 RU = 7 actin monomers+1 troponin complex+1 tropomyosin molecule). XB binding can also amplify thin filament activation through interactions with RUs (XB-RU cooperativity). Because these interactions occur with a temporal order, they can be considered kinetic forms of cooperativity. Our previous spatially-explicit models illustrated that mechanical forms of cooperativity also exist, arising from XB-induced XB binding (XB-XB cooperativity). These mechanical and kinetic forms of cooperativity are likely coordinated during muscle contraction, but the relative contribution from each of these mechanisms is difficult to separate experimentally. To investigate these contributions we built a multi-filament model of the half sarcomere, allowing RU activation kinetics to vary with the state of neighboring RUs or XBs. Simulations suggest Ca2+ binding to troponin activates a thin filament distance spanning 9 to 11 actins and coupled RU-RU interactions dominate the cooperative force response in skeletal muscle, consistent with measurements from rabbit psoas fibers. XB binding was critical for stabilizing thin filament activation, particularly at submaximal Ca2+ levels, even though XB-RU cooperativity amplified force less than RU-RU cooperativity. Similar to previous studies, XB-XB cooperativity scaled inversely with lattice stiffness, leading to slower rates of force development as stiffness decreased. Including RU-RU and XB-RU cooperativity in this model resulted in the novel prediction that the force-[Ca2+] relationship can vary due to filament and XB compliance. Simulations also suggest kinetic forms of cooperativity occur rapidly and dominate early to get activation, while mechanical forms of cooperativity act more slowly, augmenting XB binding as force continues to develop.  相似文献   

14.
Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank–Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (ktr; which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K+ contractures to induce a tonic level of force, we showed the ktr was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of ktr in rat muscle at optimal length (Lopt) and 90% of optimal length (L90) revealed that ktr was significantly slower at Lopt (27.7 ± 3.3 and 27.8 ± 3.0 s−1 in duplicate analyses) than at L90 (45.1 ± 7.6 and 47.5 ± 9.2 s−1). We therefore show that ktr can be measured in intact rat and rabbit cardiac trabeculae, and that the ktr decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank–Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.  相似文献   

15.
When smooth muscle myosin subfragment 1 (S1) is bound to actin filaments in vitro, the light chain domain tilts upon release of MgADP, producing a approximately 3.5-nm axial motion of the head-rod junction (Whittaker et al., 1995. Nature. 378:748-751). If this motion contributes significantly to the power stroke, rigor tension of smooth muscle should decrease substantially in response to cross-bridge binding of MgADP. To test this prediction, we monitored mechanical properties of permeabilized strips of chicken gizzard muscle in rigor and in the presence of MgADP. For comparison, we also tested psoas and soleus muscle fibers. Any residual bound ADP was minimized by incubation in Mg2+-free rigor solution containing 15 mM EDTA. The addition of 2 mM MgADP, while keeping ionic strength and free Mg2+ concentration constant, resulted in a slight increase in rigor tension in both gizzard and soleus muscles, but a decrease in psoas muscle. In-phase stiffness monitored during small (<0.1%) 500-Hz sinusoidal length oscillations decreased in all three muscle types when MgADP was added. The changes in force and stiffness with the addition of MgADP were similar at ionic strengths from 50 to 200 mM and were reversible. The results with gizzard muscle were similar after thiophosphorylation of the regulatory light chain of myosin. These results suggest that the axial motion of smooth muscle S1 bound to actin, upon dissociation of MgADP, is not associated with force generation. The difference between the present mechanical data and previous structural studies of smooth S1 may be explained if geometrical constraints of the intact contractile filament array alter the motions of the myosin heads.  相似文献   

16.
A computer simulation procedure is used to analyze the generation of propagated bending waves by flagellar models in which active sliding is generated by a cycle of cross-bridge activity. Two types of cross-bridge cycle have been examined in detail. In both cycles, cross-bridge attachment is followed immediately by a configurational change in the cross-bridge, which transfers energy to a stretched elastic element and generates a shearing force between the filaments. In the first model, which has cross-bridge behavior close to current ideas about cross-bridge behavior in muscle, cross-bridge attachment is proportional to curvature of the flagellum and detachment is an exponential decay process. The configurational change is equivalent to an angular deviation of pi/5 radians. In the second type of cross-bridge cycle, cross-bridge attachment occurs rapidly when a critical curvature is reached, and detachment occurs when a critical curvature in the opposite direction is reached. With this cycle, an unrealistically large angular deviation of the cross-bridges, equivalent to 3.0 radians, is required to obtain bending waves of normal amplitude. Both models generate bending wave patterns similar to those obtained in earlier work. However, the behavior of the second type of cross-bridge model more closely matches the actual behavior of flagella under experimental conditions: the chemical turnover rate per beat cycle remains constant as the viscosity is increased, and reduction in the number of active cross-bridges can cause a reduction in beat frequency, with little change in amplitude or wavelength.  相似文献   

17.
18.
The correlation of acto-myosin ATPase rate with tension redevelopment kinetics (k(tr)) was determined during Ca(+2)-activated contractions of demembranated rabbit psoas muscle fibers; the ATPase rate was either increased or decreased relative to control by substitution of ATP (5.0 mM) with 2-deoxy-ATP (dATP) (5.0 mM) or by lowering [ATP] to 0.5 mM, respectively. The activation dependence of k(tr) and unloaded shortening velocity (Vu) was measured with each substrate. With 5.0 mM ATP, Vu depended linearly on tension (P), whereas k(tr) exhibited a nonlinear dependence on P, being relatively independent of P at submaximum levels and rising steeply at P > 0.6-0.7 of maximum tension (Po). With dATP, Vu was 25% greater than control at Po and was elevated at all P > 0.15Po, whereas Po was unchanged. Furthermore, the Ca(+2) sensitivity of both k(tr) and P increased, such that the dependence of k(tr) on P was not significantly different from control, despite an elevation of Vu and maximal k(tr). In contrast, lowering [ATP] caused a slight (8%) elevation of Po, no change in the Ca(+2) sensitivity of P, and a decrease in Vu at all P. Moreover, k(tr) was decreased relative to control at P > 0.75Po, but was elevated at P < 0.75Po. These data demonstrate that the cross-bridge cycling rate dominates k(tr) at maximum but not submaximum levels of Ca(2+) activation.  相似文献   

19.
20.
Fiber isometric tension redevelopment rate (kTR) was measured during submaximal and maximal activations in glycerinated fibers from rabbit psoas muscle. In fibers either containing endogenous skeletal troponin C (sTnC) or reconstituted with either purified cardiac troponin C (cTnC) or sTnC, graded activation was achieved by varying [Ca2+]. Some fibers were first partially, then fully, reconstituted with a modified form of cTnC (aTnC) that enables active force generation and shortening in the absence of Ca2+. kTR was derived from the half-time of tension redevelopment. In control fibers with endogenous sTnC, kTR increased nonlinearly with [Ca2+], and maximal kTR was 15.3 +/- 3.6 s-1 (mean +/- SD; n = 26 determinations on 25 fibers) at pCa 4.0. During submaximal activations by Ca2+, kTR in cTnC reconstituted fibers was approximately threefold faster than control, despite the lower (60%) maximum Ca(2+)-activated force after reconstitution. To obtain submaximal force with aTnC, eight fibers were treated to fully extract endogenous sTnC, then reconstituted with a mixture of a TnC and cTnC (aTnC:cTnC molar ratio 1:8.5). A second extraction selectively removed cTnC. In such fibers containing aTnC only, neither force nor kTR was affected by changes in [Ca2+]. Force was 22 +/- 7% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 24 +/- 8% (mean +/- SD; n = 8) at pCa 4.0, whereas kTR was 98 +/- 14% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 96 +/- 15% (mean +/- SD; n = 8) at pCa 4.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号