首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amiodarone is a widely prescribed antiarrhythmic drug used to treat the most prevalent type of arrhythmia, atrial fibrillation (AF). At therapeutic concentrations, amiodarone alters the function of many diverse membrane proteins, which results in complex therapeutic and toxicity profiles. Other antiarrhythmics, such as dronedarone, similarly alter the function of multiple membrane proteins, suggesting that a multipronged mechanism may be beneficial for treating AF, but raising questions about how these antiarrhythmics regulate a diverse range of membrane proteins at similar concentrations. One possible mechanism is that these molecules regulate membrane protein function by altering the common environment provided by the host lipid bilayer. We took advantage of the gramicidin (gA) channels’ sensitivity to changes in bilayer properties to determine whether commonly used antiarrhythmics—amiodarone, dronedarone, propranolol, and pindolol, whose pharmacological modes of action range from multi-target to specific—perturb lipid bilayer properties at therapeutic concentrations. Using a gA-based fluorescence assay, we found that amiodarone and dronedarone are potent bilayer modifiers at therapeutic concentrations; propranolol alters bilayer properties only at supratherapeutic concentration, and pindolol has little effect. Using single-channel electrophysiology, we found that amiodarone and dronedarone, but not propranolol or pindolol, increase bilayer elasticity. The overlap between therapeutic and bilayer-altering concentrations, which is observed also using plasma membrane–like lipid mixtures, underscores the need to explore the role of the bilayer in therapeutic as well as toxic effects of antiarrhythmic agents.  相似文献   

2.
The role played by oxidative stress in amiodarone-induced mitochondrial toxicity is debated. Dronedarone shows pharmacological properties similar to those of amiodarone but several differences in terms of toxicity. In this study, we analyzed the effects of the two drugs on liver mitochondrial function by administering an equivalent human dose to a rat model. Amiodarone increased mitochondrial H(2)O(2) synthesis, which in turn induced cardiolipin peroxidation. Moreover, amiodarone inhibited Complex I activity and uncoupled oxidative phosphorylation, leading to a reduction in the hepatic ATP content. We also observed a modification of membrane phospholipid composition after amiodarone administration. N-acetylcysteine completely prevented such effects. Although dronedarone shares with amiodarone the capacity to induce uncoupling of oxidative phosphorylation, it did not show any of the oxidative effects and did not impair mitochondrial bioenergetics. Our data provide important insights into the mechanism of mitochondrial toxicity induced by amiodarone. These results may greatly influence the clinical application and toxicity management of these two antiarrhythmic drugs.  相似文献   

3.
The distribution of the antiarrhythmic drug amiodarone and its principal lipophilic metabolite, desethylamiodarone, was determined in postmortem tissues of six patients who received amiodarone therapy (treatment period, 6-189 days; total dose, 4.8-127.0 g). Amiodarone concentration was highest in liver, lung, adipose tissue, and pancreas, followed by kidney, heart (left ventricle), and thyroid gland, and lowest in antemortem plasma. There was no measurable amiodarone in brain (less than 1.0 microgram/g). Desethylamiodarone concentration was highest in liver and lung, followed by pancreas, adipose tissue, kidney, heart, thyroid gland, and brain, and lowest in plasma. For most patients, the desethylamiodarone concentration was higher than the amiodarone concentration in liver, lung, kidney, heart, thyroid gland, and brain, whereas the parent drug concentration was higher than the metabolite concentration in adipose tissue, pancreas, and plasma. Tissue amiodarone and desethylamiodarone concentrations appeared to be related more closely to the total dose of amiodarone than to their respective plasma concentrations. One patient died of apparent amiodarone-induced pulmonary toxicity after an 18-day period of pharmacotherapy. Clinical evidence of pulmonary dysfunction appeared at 15 days after the initiation of amiodarone therapy, and the patient died at 23 days. Histologic assessment of a lung necropsy specimen revealed acute alveolar interstitial damage. This case represents the earliest reported incident of amiodarone-induced pulmonary toxicity.  相似文献   

4.
Amiodarone is an effective antiarrhythmic that has been used in Europe for over a decade and has been available for investigational use in North America for a shorter time. It has several well recognized side effects. Recent reports have related pulmonary disorders to the use of this drug; fibrosing alveolitis has been found by lung biopsy. Amiodarone''s toxicity to the lung does not appear to be dose-related. Besides cessation of amiodarone administration, management of this complication includes steroid therapy. A case is described of nonspecific diffuse alveolar damage syndrome in a patient who had received amiodarone.  相似文献   

5.
Dronedarone is a recently developed new class III antiarrhythmic drug which possesses electrophysiological properties of all four Vaughan-Williams classes. An important difference with amiodarone is that it does not contain an iodine component and therefore lacks the iodine-related adverse effects. Based on currently available data, dronedarone can not be recommended as first-line therapy for either rhythm or rate control. We recommend to initiate rhythm or rate control with drugs as indicated in the 2006 guidelines of the ESC and other organisations. As amiodarone, dronedarone can be given to patients for whom standard drug therapy is not effective, or limited by (severe) side effects, although it is less effective than amiodarone. Nevertheless, it may be considered to give dronedarone initially to patients who would otherwise have received amiodarone, since the latter has more severe side effects than the former drug. The daily dosage of dronedarone is oral administration, 400 mg twice daily. Dronedarone is contraindicated in patients with impaired left ventricular function (NYHA class III/IV) and haemodynamic instability. (Neth Heart J 2010;18:370-3.)  相似文献   

6.
Cationic amphiphilic drugs induce a phospholipid storage disorder known as phospholipidosis. Halogenated analogs of the drugs are more potent inducers of phospholipidosis when compared to nonhalogenated analogs. Two such antipsychotic drugs, promazine and chlorpromazine, are effectively taken up by the lungs and induce lamellar inclusions in vitro. We compared the in vivo toxicity and efficacy of promazine and chlorpromazine to induce phospholipidosis in the lung and in pulmonary alveolar macrophages. Male Sprague-Dawley rats were given promazine or chlorpromazine (25 mg/kg/day, P.O., in water) for 5 weeks. Food intake was decreased in promazine- and chlorpromazine-treated rats, chlorpromazine rats being affected more than promazine rats. To minimize experimental error due to starvation, control rats were pair-fed. The body weight gain was decreased in chlorpromazine rats in comparison to pair-fed controls. Chlorpromazine-treated rats, but not promazine-treated rats, showed increased mortality over the 5-week treatment period. Histopathologic examination of lung revealed loss of alveolar macrophages with no other gross abnormalities in chlorpromazine-treated rats. Quantitative analysis of lung lavage also showed significant reduction in the number of macrophages. This finding is in contrast to other cationic amphiphilic drugs, which induce phospholipidosis as well as accumulation of alveolar macrophages. Phospholipid level increased in alveolar macrophages but not in lavaged lung following chlorpromazine treatment. Acid phosphatase activity in lavaged lung homogenate and macrophages of promazine- and chlorpromazine-treated rats, taken as an index of toxicity to cells, did not differ significantly from control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Amiodarone, a new antiarrhythmic drug, may produce severe and potentially lethal pulmonary toxicity. A case is presented of a patient on amiodarone therapy who presented with recurrent pleural effusions and subsequently developed pulmonary infiltrates. The diagnosis of lung toxicity was documented by the cytologic examination of the pleural effusions and the bronchial washings. It was further supported by the ultrastructural demonstration of the characteristic cytoplasmic osmiophilic lamellar inclusions in the foamy macrophages. We conclude that cytologic and ultrastructural examinations of bronchial lavage cells are extremely helpful in the diagnosis of amiodarone-induced pulmonary toxicity.  相似文献   

8.
9.
Cytological patterns of bronchoalveolar lavage (BAL) in pulmonary alveolar proteinosis (PAP) and amiodarone pulmonary toxicity (APT) are presented together with light and electron microscopy (EM). the differential cell count of BAL in both diseases is similar in that alveolar macrophages predominate. However, the cytology of PAP is characterized by scanty macrophages and alveolar epithelial cells in abundant periodic acid-Schiff (PAS)-positive extracellular material. the gross appearance of the BAL fluid is therefore opaque. In contrast, the cytology of APT is characterized by foamy alveolar macrophages with numerous lamellar bodies in their cytoplasm, and the BAL fluid is clear.  相似文献   

10.
Amiodarone may induce lung damage by direct toxicity or indirectly through inflammation. To clarify the mechanism of direct toxicity, we briefly exposed rabbit alveolar macrophages to amiodarone and analyzed their morphology, synthesis, and degradation of dipalmitoylphosphatidylcholine (DPPC); distribution of lysosomal enzymes; and uptake of diphtheria toxin and surfactant protein (SP) A used as tracers of the endocytic pathway. Furthermore, in newborn rabbits, we studied the clearance of DPPC and SP-A instilled into the trachea together with increasing amounts of amiodarone. We found that in vitro amiodarone decreases the surface density of mitochondria and lysosomes while increasing the surface density of inclusion bodies, increases the incorporation of choline into DPPC, modifies the distribution of lysosomal enzymes, and does not affect the uptake and processing of diphtheria toxin but inhibits the degradation of SP-A. In vivo amiodarone inhibits the degradation of SP-A but not of DPPC. We conclude that the acute exposure to amiodarone perturbs the endocytic pathway acting after the early endosomes, alters the traffic of lysosomal enzymes, and interferes with the turnover of SP-A.  相似文献   

11.
Role of phospholipase A inhibition in amiodarone pulmonary toxicity in rats   总被引:4,自引:0,他引:4  
Amiodarone is effective in the treatment of ventricular and supraventricular arrhythmias. In man its clinical use is associated with the accumulation of phospholipid-rich multilamellar inclusions in various tissues including lung, liver and others. This report presents evidence showing that amiodarone is a potent inhibitor of lysosomal phospholipase A from rat alveolar macrophages, J-744 macrophages and rat liver. When compared with other cationic amphiphilic agents which are known to produce phospholipidosis, amiodarone is one of the most potent inhibitors yet discovered. The subcellular localization of amiodarone has been determined in lung and its distribution was consistent with a lysosomal localization. It is hypothesized that amiodarone causes cellular phospholipidosis by concentrating in lysosomes and inhibiting phospholipid catabolism.  相似文献   

12.
13.
Amiodarone is an antiarrhythmic drug which has received considerable attention in recent years. It has been suggested that the unusual pharmacodynamic characteristics of this drug may be due in part to the influence of active metabolites. Using fast atom bombardment (FAB) mass spectrometry we have identified a new metabolite of amiodarone, the di-N-desethyl analog (DDEA). This metabolite was present in the blood of dogs treated with the parent drug, and showed a greater affinity for myocardium than did the parent drug. The unique features of FAB mass spectrometry over electron impact mass spectrometry was an essential element in facilitating the identification of this new metabolite. Whether or not this metabolite has pharmacologic activity or is responsible for some of the side effects occurring during amiodarone administration is not known.  相似文献   

14.
Treatment of cardiac dysrhythmias with the iodinated benzofuran derivative amiodarone (AM) is limited by pulmonary toxicity. The susceptibilities of different lung cell types of male Golden Syrian hamsters to AM-induced cytotoxicity were investigated in vitro. Bronchoalveolar lavage and protease digestion to release cells, followed by centrifugal elutriation and density gradient centrifugation, resulted in preparations enriched with alveolar macrophages (98%), alveolar type II cells (75-85%), and nonciliated bronchiolar epithelial (Clara) cells (35-50%). Alveolar type II cell and Clara cell preparations demonstrated decreased viability (by 0.5% trypan blue dye exclusion) when incubated with 50 microM AM for 36 h, and all AM-treated cell preparations demonstrated decreased viability when incubated with 100 or 200 microM AM. Based on a viability index ((viability of AM-treated cells/viability of controls) x 100%), the Clara cell fraction was significantly (p<0.05) more susceptible than all of the other cell types to 50 microM AM. However, AM cytotoxicity was greatest (p<0.05) in alveolar macrophages following incubation with 100 or 200 microM AM. There was no difference between any of the enriched cell preparations in the amount of drug accumulated following 24 h of incubation with 50 microM AM, whereas alveolar macrophages accumulated the most drug during incubation with 100 microM AM. Thus, the most susceptible cell type was dependent on AM concentration. AM-induced cytotoxicity in specific cell types may initiate processes leading to inflammation and pulmonary fibrosis.  相似文献   

15.
Summary We have employed the fluorescent dye nile red to distinguish between normal cells and cells containing lysosomal accumulations of phospholipids. When fibroblasts from an individual with a genetic deficiency in lysosomal sphingomyelinase activity (Niemann-Pick disease) were stained with nile red and visualized by fluorescence microscopy, orange-colored inclusions were observed throughout the cytoplasm. The orange fluorescent bodies could be distinguished from the neutral lipid droplets that fluoresce a brilliant yellow-gold in the presence of nile red. These inclusions were also observed in alveolar macrophages obtained from rats treated with amiodarone, an antiarrhythmic agent known to produce lysosomal phospholipidosis. Flow cytofluorometric analysis revealed that staining of these phospholipid-rich macrophages with nile red can distinguish them from control alveolar macrophages. These results demonstrate that nile red can be employed for the rapid staining of cellular phospholipid inclusions.  相似文献   

16.
Nile red staining of lysosomal phospholipid inclusions.   总被引:1,自引:0,他引:1  
We have employed the fluorescent dye nile red to distinguish between normal cells and cells containing lysosomal accumulations of phospholipids. When fibroblasts from an individual with a genetic deficiency in lysosomal sphingomyelinase activity (Niemann-Pick disease) were stained with nile red and visualized by fluorescence microscopy, orange-colored inclusions were observed throughout the cytoplasm. The orange fluorescent bodies could be distinguished from the neutral lipid droplets that fluoresce a brilliant yellow-gold in the presence of nile red. These inclusions were also observed in alveolar macrophages obtained from rats treated with amiodarone, an antiarrhythmic agent known to produce lysosomal phospholipidosis. Flow cytofluorometric analysis revealed that staining of these phospholipid-rich macrophages with nile red can distinguish them from control alveolar macrophages. These results demonstrate that nile red can be employed for the rapid staining of cellular phospholipid inclusions.  相似文献   

17.
Fungicidal activity of amiodarone is tightly coupled to calcium influx   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
Angiogenesis after pulmonary ischemia is initiated by reactive O(2) species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int), CD11C+), alveolar macrophages (MHCII(int), CD11C+, CD11B-) and mature lung macrophages (MHCII(int), CD11C+, CD11B+) in left lungs from mice immediately (0 h) or 24 h after left pulmonary artery ligation (LPAL). In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05). No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs). When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01) compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA). These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.  相似文献   

20.
To investigate the effects of protein calorie malnutrition (PCM) on alveolar macrophage function, we measured antimicrobial activity, IL-1 and TNF production, and arachidonic acid metabolism in alveolar macrophages of infant rats with moderate and severe PCM. Groups of weanling male rats were fed a diet containing 0.8% protein (PCM) or 24% protein (control). A third group (pair fed) was fed limited amounts of the control diet that matched the mean daily dietary intake of the PCM group. After 4 wk on the diets, alveolar macrophages from all three groups functioned similarly with respect to surface adherence, phagocytosis and killing of Listeria monocytogenes, release of hydrogen peroxide and superoxide anion, and production of IL-1 and TNF. In contrast, Listeria-stimulated alveolar macrophages from the PCM group exhibited a marked shift in arachidonic acid metabolism, with impaired production of leukotriene B4 and enhanced release of thromboxane B2 and PGE2. The membrane arachidonic acid content and the uptake of [3H]arachidonate by alveolar macrophages did not differ among the three groups. The shift toward the cyclooxygenase pathway was not seen after 2 wk of dietary restriction and was reversed if PCM animals were fed the control diet for 1 wk. Thus, PCM does not affect the antimicrobial activity or cytokine production of alveolar macrophages, but causes alterations in arachidonic acid metabolism that may interfere with the modulatory functions of alveolar macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号