首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 15-hydroxyeicosatetraenoic acid (15-HETE), a lipid metabolite and vasoconstrictor, plays an important role in hypoxic contraction of pulmonary arteries (PAs) through working on smooth muscle cells (SMCs). Previous studies have shown that vascular endothelium is also involved in PAs tone regulation. However, little is known as to how the pulmonary artery endothelial cells (PAECs) are related to the 15-HETE-induced vasoconstriction and that which intracellular signaling systems are critical. To test this hypothesis, we examined PAs constriction in isolated rat PAs rings, the expression and activity of endothelial nitric oxide synthase (eNOS) with western blot, and nitric oxide (NO) production using the DAF-FM DA fluorescent indicator. The results showed that the 15-HETE-induced PAs constriction was diminished in endothelium-intact rings. In the presence of the eNOS inhibitor L-NAME, vasoconstrictor responses to KCl were greater than the control. The activation of eNOS was activated by Ca2? released from intracellular stores and the PI3K/Akt pathway. Phosphorylations of the eNOS at Ser-1177 and Akt at Ser-473 were necessary for their activity. A prolonged 15-HETE treatment (30 min) led to a decrease in NO production by phosphorylation of eNOS at Thr-495, leading to augmentation of PAs constriction. Therefore, 15-HETE initially inhibited the PAs constriction through the endothelial NO system, and both Ca2? and the PI3K/Akt signaling systems are required for the effects of 15-HETE on PAs tone regulation.  相似文献   

2.
The 15-hydroxyeicosatetraenoic acid (15-HETE), a lipid metabolite and vasoconstrictor, plays an important role in hypoxic contraction of pulmonary arteries (PAs) through working on smooth muscle cells (SMCs). Previous studies have shown that vascular endothelium is also involved in PAs tone regulation. However, little is known as to how the pulmonary artery endothelial cells (PAECs) are related to the 15-HETE-induced vasoconstriction and that which intracellular signaling systems are critical. To test this hypothesis, we examined PAs constriction in isolated rat PAs rings, the expression and activity of endothelial nitric oxide synthase (eNOS) with western blot, and nitric oxide (NO) production using the DAF-FM DA fluorescent indicator. The results showed that the 15-HETE-induced PAs constriction was diminished in endothelium-intact rings. In the presence of the eNOS inhibitor L-NAME, vasoconstrictor responses to KCl were greater than the control. The activation of eNOS was activated by Ca2+ released from intracellular stores and the PI3K/Akt pathway. Phosphorylations of the eNOS at Ser-1177 and Akt at Ser-473 were necessary for their activity. A prolonged 15-HETE treatment (30?min) led to a decrease in NO production by phosphorylation of eNOS at Thr-495, leading to augmentation of PAs constriction. Therefore, 15-HETE initially inhibited the PAs constriction through the endothelial NO system, and both Ca2+ and the PI3K/Akt signaling systems are required for the effects of 15-HETE on PAs tone regulation.  相似文献   

3.
Hypoxia initiated pulmonary vasoconstriction is due to the inhibition of voltage-gated K(+) (K(V)) channels. But the mechanism is unclear. We have evidence that hypoxia activates 15-lipoxygenase (15-LOX) in distal pulmonary arteries and increases the formation of 15-hydroxyeicosatetraenoate (15-HETE). 15-HETE-induced pulmonary artery constriction to be through the inhibition of K(V) channels (K(V)1.5, K(V)2.1 and K(V)3.4). However, no direct link among hypoxia, 15-HETE and inhibition of K(V) subtypes is established. Therefore, we investigated whether 15-LOX/15-HETE pathway contributes to the hypoxia-induced down-regulation of K(V) channels. As K(V)1.5 channel is O(2)-sensitive, it was chosen in the initial study. We found that inhibition of 15-LOX suppressed the response of hypoxic pulmonary artery rings to phenylephrine. The expressions of K(V)1.5 channel mRNA and protein was robustly up-regulated in cultured PASMC and pulmonary artery after blocking of 15-LOX by lipoxygenase inhibitors in hypoxia. The 15-LOX blockade also partly rescued the voltage-gated K(+) current (I(K(V))). 15-HETE contributes to the down-regulation of K(V)1.5 channel, inhibition of I(K(V)) and increase of native pulmonary artery tension after hypoxia. Hypoxia inhibits K(V)1.5 channel through 15-LOX/15-HETE pathway.  相似文献   

4.
We examined the responses of newborn piglet pulmonary resistance arteries (PRAs) to 5,6-epoxyeicosatrienoic acid (5,6-EET), a cytochrome P-450 metabolite of arachidonic acid. In PRAs preconstricted with a thromboxane A(2) mimetic, 5,6-EET caused a concentration-dependent dilation. This dilation was partially inhibited by the combination of charybdotoxin (CTX) and apamin, inhibitors of large and small conductance calcium-dependent potassium (K(Ca)) channels, and was abolished by depolarization of vascular smooth muscle with KCl. Disruption of the endothelium significantly attenuated the dilation, suggesting involvement of one or more endothelium-derived vasodilator pathways in this response. The dilation was partially inhibited by nitro-L-arginine (L-NA), an inhibitor of nitric oxide synthase (NOS), but was unaffected by indomethacin, a cyclooxygenase (COX) inhibitor. The combined inhibition of NOS and K(Ca) channels with L-NA, CTX, and apamin abolished 5,6-EET-mediated dilation. Similarly, combined inhibition of NOS and COX abolished the response. We conclude that 5,6-EET is a potent vasodilator in newborn piglet PRAs. This dilation is mediated by redundant pathways that include release of nitric oxide (NO) and COX metabolites and activation of K(Ca) channels. The endothelium dependence of this response suggests that 5,6-EET is not itself an endothelium-derived hyperpolarizing factor (EDHF) but may induce the release of one or more endothelium-derived relaxing factors, such as NO and/or EDHF.  相似文献   

5.
Arachidonic acid (AA) can undergo monooxygenation or epoxidation by enzymes in the cytochrome P450 (CYP) family in the brain, kidney, lung, vasculature, and the liver. CYP-AA metabolites, 19- and 20-hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs) and diHETEs have different biological properties based on sites of production and can be stored in tissue lipids and released in response to hormonal stimuli. 20-HETE is a vasoconstrictor, causing blockade of Ca(++)-activated K(+) (KCa) channels. Inhibition of the formation of nitric oxide (NO) by 20-HETE mediates most of the cGMP-independent component of the vasodilator response to NO. 20-HETE elicits a potent dilator response in human and rabbit pulmonary vascular and bronchiole rings that is dependent on an intact endothelium and COX. 20-HETE is also a vascular oxygen sensor, inhibits Na(+)/K(+)-ATPase activity, is an endogenous inhibitor of the Na(+)-K(+)-2Cl(-)cotransporter, mediates the mitogenic actions of vasoactive agents and growth factors in many tissues and plays a significant role in angiogenesis. EETs, produced by the vascular endothelium, are potent dilators. EETs hyperpolarize VSM cells by activating KCa channels. Several investigators have proposed that one or more EETs may serve as endothelial-derived hyperpolarizing factors (EDHF). EETs constrict human and rabbit bronchioles, are potent mediators of insulin and glucagon release in isolated rat pancreatic islets, and have anti-inflammatory activity. Compared with other organs, the liver has the highest total CYP content and contains the highest levels of individual CYP enzymes involved in the metabolism of fatty acids. In humans, 50-75% of CYP-dependent AA metabolites formed by liver microsomes are omega/omega-OH-AA, mainly w-OH-AA, i.e. 20HETE, and 13-28% are EETs. Very little information is available on the role of 19- and 20-HETE and EETs in liver function. EETs are involved in vasopressin-induced glycogenolysis, probably via the activation of phosphorylase. In the portal vein, inhibition of EETs exerts profound effects on a variety of K-channel activities in smooth muscles of this vessel. 20-HETE is a weak, COX-dependent, vasoconstrictor of the portal circulation. EETs, particularly 11,12-EET, cause vasoconstriction of the porto-sinusoidal circulation. Increased synthesis of EETs in portal vessels and/or sinusoids or increased levels in blood from the meseneric circulation may participate in the pathophysiology of portal hypertension of cirrhosis. CYP-dependent AA metabolites are involved in the pathophysiology of portal hypertension, not only by increasing resistance in the porto-sinusoidal circulation, but also by increasing portal inflow through mesenteric vasodilatation. In patients with cirrhosis, urinary 20-HETE is several-fold higher than PGs and TxB2, whereas in normal subjects, 20-HETE and PGs are excreted at similar rates. Thus, 20-HETE is probably produced in increased amounts in the preglomerular microcirculation accounting for the functional decrease of flow and increase in sodium reabsorption. In conclusion, CYP-AA metabolites represent a group of compounds that participate in the regulation of liver metabolic activity and hemodynamics. They appear to be deeply involved in abnormalities related to liver diseases, particularly cirrhosis, and play a key role in the pathophysiology of portal hypertension and renal failure.  相似文献   

6.
Mediator contributions to hypoxic dilation of rat gracilis muscle resistance arteries were determined by measuring dilation, vascular smooth muscle hyperpolarization, and metabolite production after incremental hypoxia. Nitric oxide (NO) synthase inhibition abolished responses to mild hypoxia, whereas COX inhibition impaired responses to more severe hypoxia by 77%. Blocking 20-hydroxyeicosatetraenoic acid (20-HETE) impaired responses to moderate hypoxia. With only NO systems intact, responses were maintained with mild hypoxia (88% normal) mediated via K(Ca) channels. When only COX pathways were intact, responses to moderate-severe hypoxia were largely retained (79% of normal) mediated via K(ATP) channels. Vessel responses to moderate hypoxia were retained with only 20-HETE systems intact mediated via K(Ca) channels. NO production increased 5.6-fold with mild hypoxia; greater hypoxia was without further effect. With increased hypoxia, 20-HETE levels fell to 40% of control values. 6-keto-PGF(1alpha) levels were not altered with mild hypoxia, but increased 4.6-fold with severe hypoxia. These results suggest vascular reactivity to progressive hypoxia represents an integration of NO production (mild hypoxia), PGI(2) production (severe hypoxia), and reduced 20-HETE levels (moderate hypoxia).  相似文献   

7.
The coupling of tissue blood flow to cellular metabolic demand involves oxygen-dependent adjustments in arteriolar tone, and arteriolar responses to oxygen can be mediated, in part, by changes in local production of 20-HETE. In this study, we examined the long-term effect of dietary salt on arteriolar oxygen responsiveness in the exteriorized, superfused rat spinotrapezius muscle and the role of 20-HETE in this responsiveness. Rats were fed either a normal-salt (NS, 0.45%) or high-salt (HS, 4%) diet for 4-5 wk. There was no difference in steady-state tissue Po(2) between NS and HS rats, and elevation of superfusate oxygen content from 0% to 10% caused tissue Po(2) to increase by the same amount in both groups. However, the resulting reductions in arteriolar diameter and blood flow were less in HS rats than NS rats. Inhibition of 20-HETE formation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or 17-octadecynoic acid (17-ODYA) attenuated oxygen-induced constriction in NS rats but not HS rats. Exogenous 20-HETE elicited arteriolar constriction that was greatly reduced by the large-conductance Ca(2+)-activated potassium (K(Ca)) channel inhibitors tetraethylammonium chloride (TEA) and iberiotoxin (IbTx) in NS rats and a smaller constriction that was less sensitive to TEA or IbTx in HS rats. Arteriolar responses to exogenous angiotensin II were similar in both groups but more sensitive to inhibition with DDMS in NS rats. Norepinephrine-induced arteriolar constriction was similar and insensitive to DDMS in both groups. We conclude that 20-HETE contributes to oxygen-induced constriction of skeletal muscle arterioles via inhibition of K(Ca) channels and that a high-salt diet impairs arteriolar responses to increased oxygen availability due to a reduction in vascular smooth muscle responsiveness to 20-HETE.  相似文献   

8.
While myogenic force in response to a changing arterial pressure has been described early in the 20th century, it was not until 1984 that the effect of a sequential increase in intraluminal pressure on cannulated cerebral arterial preparations was found to result in pressure-dependent membrane depolarization associated with spike generation and reduction in lumen diameter. Despite a great deal of effort by different laboratories and investigators, the identification of the existence of a mediator of the pressure-induced myogenic constriction in arterial muscle remained a challenge. It was the original finding by our laboratory that demonstrated the capacity of cerebral arterial muscle cells to express the cytochrome P-450 4A enzyme that catalyzes the formation of the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid, the production of which in cerebral arterial muscle cells increases with the elevation in intravascular pressure. 20-HETE activates protein kinase C and causes the inhibition of Ca(2+)-activated K(+) channels, depolarizes arterial muscle cell membrane, and activates L-type Ca(2+) channel to increase intracellular Ca(2+) levels and evoke vasoconstriction. The inhibition of 20-HETE formation attenuates pressure-induced arterial myogenic constriction in vitro and blunts the autoregulation of cerebral blood flow in vivo. We suggest that the formation and action of cytochrome P-450-derived 20-HETE in cerebral arterial muscle could play a critically important role in the control of cerebral arterial tone and the autoregulation of cerebral blood flow under physiological conditions.  相似文献   

9.
In contrast to its constrictor effects on peripheral arteries, 20-hydroxyeicosatetraenoic acid (20-HETE) is an endothelial-dependent dilator of pulmonary arteries (PAs). The present study examined the hypothesis that the vasodilator effects of 20-HETE in PAs are due to an elevation of intracellular calcium concentration ([Ca(2+)](i)) and the release of nitric oxide (NO) from bovine PA endothelial cells (BPAECs). BPAECs express cytochrome P-450 4A (CYP4A) protein and produce 20-HETE. 20-HETE dilated PAs preconstricted with U-46619 or norepinephrine and treated with the cytochrome P-450 inhibitor 17-octadecynoic acid and the cyclooxygenase inhibitor indomethacin. The dilator effect of 20-HETE was blocked by the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) or by removal of endothelium. 20-HETE significantly increased [Ca(2+)](i) and NO production in BPAECs. 20-HETE-induced NO release was blunted by removal of extracellular calcium, as well as NO synthase inhibitors (L-NAME). These results suggest that 20-HETE dilates PAs at least in part by increasing [Ca(2+)](i) and NO release in BPAECs.  相似文献   

10.
Mechanisms that maintain high pulmonary vascular resistance (PVR) and oppose vasodilation in the fetal lung are poorly understood. In fetal lambs, increased pulmonary artery pressure evokes a potent vasoconstriction, suggesting that a myogenic response contributes to high PVR in the fetus. In adult systemic circulations, the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) has been shown to modulate the myogenic response, but its role in the fetal lung is unknown. We hypothesized that acute increases in pulmonary artery pressure release 20-HETE, which causes vasoconstriction, or a myogenic response, in the fetal lung. To address this hypothesis, we studied the hemodynamic effects of N-methylsufonyl-12,12-dibromododec-11-enamide (DDMS), a specific inhibitor of 20-HETE production, on the pulmonary vasoconstriction caused by acute compression of the ductus arteriosus (DA) in chronically prepared fetal sheep. An inflatable vascular occluder around the DA was used to increase pulmonary artery pressure under three study conditions: control, after pretreatment with nitro-L-arginine (L-NA; to inhibit shear-stress vasodilation), and after combined treatment with both L-NA and a specific 20-HETE inhibitor, DDMS. We found that DA compression after L-NA treatment increased PVR by 44 +/- 12%. Although intrapulmonary DDMS infusion did not affect basal PVR, DDMS completely abolished the vasoconstrictor response to DA compression in the presence of L-NA (44 +/- 12% vs. 2 +/- 4% change in PVR, L-NA vs. L-NA + DDMS, P < 0.05). We conclude that 20-HETE mediates the myogenic response in the fetal pulmonary circulation and speculate that pharmacological inhibition of 20-HETE might have a therapeutic role in neonatal conditions characterized by pulmonary hypertension.  相似文献   

11.
Bradykinin (BK) is a potent dilator of the perinatal pulmonary circulation. We investigated segmental differences in BK-induced dilation in newborn pig large conducting pulmonary artery and vein rings and in pressurized pulmonary resistance arteries (PRA). In conducting pulmonary arteries and veins, BK-induced relaxation is abolished by endothelial disruption and by inhibition of nitric oxide (NO) synthase with nitro-L-arginine (L-NA). In PRA, two-thirds of the dilation response is L-NA insensitive. Charybdotoxin plus apamin and depolarization with KCl abolish the L-NA-insensitive dilations, findings that implicate the release of endothelium-derived hyperpolarizing factor (EDHF). However, endothelium-disrupted PRA retain the ability to dilate to BK but not to ACh or A-23187. In endothelium-disrupted PRA, dilation was inhibited by charybdotoxin. Thus in PRA, BK elicits dilation by multiple and duplicative signaling pathways. Release of NO and EDHF contributes to the response in endothelium-intact PRA; in endothelium-disrupted PRA, dilation occurs by direct activation of vascular smooth muscle calcium-dependent potassium channels. Redundant signaling pathways mediating pulmonary dilation to BK may be required to assure a smooth transition to extrauterine life.  相似文献   

12.
13.
Effects of topical application of 15-HETE on pial arteriolar diameter and cortical perirachnoid cerebrospinal fluid (CSF) prostanoid concentrations were investigated in chloralose-anesthetized newborn pigs. Pial arteriolar diameters were measured using a closed cranial window, and CSF samples from under the window were collected for prostanoid analysis after applying artificial CSF without drug and CSF containing 15-HETE (1, 10, 100, 1000 ng/ml). 15-HETE caused significant dose-related constriction from 162 ± 17.0 μm (control diameter) to 136 ± 14.5 and 129 ± 18.7 μm (100 and 1000 ng/ml, respectively). The concentration of PGE2 (but not of PGF or 6-keto-PGF increased in CSF at 100 and 1000 ng/ml of 15-HETE. Pial arteriolar responses to 15-HETE were determined before and after indomethacin treatment (5 mg/kg, i.v.). 15-HETE (100 ng/ml) constricted pial arterioles before indomethacin (diameter change, −15 ± 10%); after indomethacin, constriction was potentiated in response to the same dose (diameter change, −26 ± 7%). These data support the hypothesis thet, in newborn piglets, 15-HETE exerts a vasoconstrictor effect on pial arterioles, which appears to be attenuated by 15-HETE-induced stimulation of dilator prostanoids.  相似文献   

14.
Lü CL  Ye H  Tang XB  Zhu DL 《生理学报》2005,57(5):605-611
缺氧诱导的15-羟二十碳四烯酸(15-hydroxyeicosatetraenoic acid,15-HETE)是引起肺动脉收缩的重要介导因子。15-HETE引起肺动脉收缩的信号转导途径尚不清楚。本研究旨在确定细胞外信号调节激酶1/2(extracellular signal-regulated kinase-1/2,ERK1/2)信号转导通路是否参与15-HETE收缩缺氧火鼠肺动脉的过程。采用组织浴槽肺动脉环张力检测、蛋白质免疫印迹Western blot)和免疫细胞化学方法。制备缺氧大鼠动物模型,成年雄性Wistar大鼠在低氧环境下(吸入氧分数为0.12)正常喂养9d。显微分离直径1-1.5mm肺动脉,剪成长为3mm的动脉环,进行血管张力检测。用ERK1/2上游激酶(MEK)抑制剂PD98059抑制ERK1/2活性。结果显示,PD98059可明显抑制15-HETE对缺氧大鼠肺动脉环的收缩作用。在去除内皮的肺动脉环,PD98059仍叮明显降低15-HETE的缩血管作用。Western blot和免疫细胞化学结果都显示,15-HETE能促进ERK1/2磷酸化。由此表明ERK1/2信号转导通路参与15-HETE收缩缺氧大鼠肺动脉的过程。  相似文献   

15.
The aim of the present study was to provide a mechanistic insight into how 20-hydroxyeicosatetraenoic acid (20-HETE) relaxes distal human pulmonary arteries (HPAs). This compound is produced by omega-hydroxylase from free arachidonic acid. Tension measurements, performed on either fresh or 1 day-cultured pulmonary arteries, revealed that the contractile responses to 1 microM 5-hydroxytryptamine were largely relaxed by 20-HETE in a concentration-dependent manner (0.01-10 microM). Iberiotoxin pretreatments (10 nM) partially decreased 20-HETE-induced relaxations. However, 10 microM indomethacin and 3 microM SC-560 pretreatments significantly reduced the relaxations to 20-HETE in these tissues. The relaxing responses induced by the eicosanoid were likely related to a reduced Ca2+ sensitivity of the myofilaments since free Ca2+ concentration ([Ca2+])-response curves performed on beta-escin-permeabilized cultured explants were shifted toward higher [Ca2+]. 20-HETE also abolished the tonic responses induced by phorbol-ester-dibutyrate (a PKC-sensitizing agent). Western blot analyses, using two specific primary antibodies against the PKC-potentiated inhibitory protein CPI-17 and its PKC-dependent phosphorylated isoform pCPI-17, confirmed that 20-HETE interferes with this intracellular process. We also investigated the effect of 20-HETE on the activation of Rho-kinase pathway-induced Ca2+ sensitivity. The data demonstrated that 20-HETE decreased U-46619-induced Ca2+ sensitivity on arteries. Hence, this observation was correlated with an increased staining of p116(Rip), a RhoA-binding protein. Together, these results strongly suggest that the 20-hydroxyarachidonic acid derivative is a potent modulator of tone in HPAs in vitro.  相似文献   

16.
Pulmonary vessel constriction results from an imbalance between vasodilator and vasoconstrictor factors released by the endothelium including nitric oxide, endothelin, prostanoids, and reactive oxygen species (ROS). ROS, generated by a variety of enzymatic sources (such as mitochondria and NADPH oxidases, a.k.a. Nox), appear to play a pivotal role in vascular homeostasis, whereas elevated levels effect vascular disease. The pulmonary circulation is very sensitive to changes in the partial pressure of oxygen and differs from the systemic circulation in its response to this change. In fact, the pulmonary vessels contract in response to low oxygen tension, whereas systemic vessels dilate. Growing evidence suggests that ROS production and ROS-related pathways may be key factors that underlie this differential response to oxygen tension. A major emphasis of our laboratory is the role of Nox isozymes in cardiovascular disease. In this review, we will focus our attention on the role of Nox-derived ROS in the control of pulmonary vascular tone.  相似文献   

17.
Li Q  Bi HR  Zhang R  Zhu DL 《生理学报》2006,58(1):77-82
通过组织浴槽血管环方法观察Kv3.4通道特异阻断剂BDS-Ⅰ对15-羟二十碳四烯酸(15-hydroxyeicosatetraenoic acid,15-FETE)收缩肺动脉血管的影响;通过酶法分离、培养Wistar大鼠肺动脉血管平滑肌细胞(pulmonary artery smooth musclecells,PASMCs),RT-PCR和Western blot技术观察15-HETE对大鼠PASMCs上Kv3.4通道表达的影响,以探讨Kv3.4通道在15-HETE收缩肺动脉过程中的作用。结果如下:(1)15-HETE以浓度依赖方式使肺动脉环张力增加,对缺氧组大鼠肺动脉环张力作用更为明显,与正常对照组相比差异显著;(2)除去肺动脉内皮后,15-HETE引起血管收缩的强度较内皮完整时增强,呈剂量依赖性收缩反应;(3)阻断Kv3.4通道可抑制15-HETE收缩肺动脉;(4)15-HETE下调PASMCs膜上Kv3.4通道mRNA及蛋白质表达。上述观察结果提示Kv3.4通道参与由15-HETE引起的缺氧肺动脉血管收缩(hypoxic pulmonary vasoconstriction,HPV)。  相似文献   

18.
Calcium-sensitive potassium (K(Ca)) channels play a critical role in mediating perinatal pulmonary vasodilation. Because infants with persistent pulmonary hypertension of the newborn (PPHN) have blunted vasodilator responses to birth-related stimuli, we hypothesized that lung K(Ca) channel gene expression is decreased in PPHN. To test this hypothesis, we measured K(Ca) channel gene expression in distal lung homogenates from both fetal lambs with severe pulmonary hypertension caused by prolonged compression of the ductus arteriosus and age-matched, sham-operated animals (controls). After at least 9 days of compression of the ductus arteriosus, fetal lambs were killed. To determine lung K(Ca) channel mRNA levels, primers were designed against the known sequence of the K(Ca) channel and used in semiquantitative RT-PCR, with lung 18S rRNA content as an internal control. Compared to that in control lambs, lung K(Ca) channel mRNA content in the PPHN group was reduced by 26 +/- 6% (P < 0.02), whereas lung voltage-gated K(+) 2.1 mRNA content was unchanged. We conclude that lung K(Ca) channel mRNA expression is decreased in an ovine model of PPHN. Decreased K(Ca) channel gene expression may contribute to the abnormal pulmonary vascular reactivity associated with PPHN.  相似文献   

19.
19-Hydroxyeicosatetraenoic acid (19-HETE, 1), a metabolically and chemically labile cytochrome P450 eicosanoid, has diverse biological activities including antagonism of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE, 2). A SAR study was conducted to develop robust analogs of 1 with improved in vitro and in vivo efficacy. Analogs were screened in vitro for inhibition of 20-HETE-induced sensitization of rat renal preglomerular microvessels toward phenylephrine and demonstrated to normalize the blood pressure of male Cyp4a14(-/-) mice that display androgen-driven, 20-HETE-dependent hypertension.  相似文献   

20.
The cerebrovascular response to decreases in hematocrit and viscosity depends on accompanying changes in arterial O2 content. This study examines whether 1) the arteriolar dilation seen after exchange transfusion with a 5% albumin solution can be reduced by the K(ATP) channel antagonist glibenclamide (known to inhibit hypoxic dilation), and 2) the arteriolar constriction seen after exchange transfusion with a cell-free hemoglobin polymer to improve O2-carrying capacity can be blocked by inhibitors of the synthesis or vasoconstrictor actions of 20-HETE. In anesthetized rats, decreasing hematocrit by one-third with albumin exchange transfusion dilated pial arterioles (14 +/- 2%; SD), whereas superfusion of the surface of the brain with 10 muM glibenclamide blocked this response (-10 +/- 7%). Exchange transfusion with polymeric hemoglobin decreased the diameter of pial arterioles by 20 +/- 3% without altering arterial pressure. This constrictor response was attenuated by superfusing the surface of the brain with a 20-HETE antagonist, WIT-002 (10 microM; -5 +/- 1%), and was blocked by two chemically dissimilar selective inhibitors of the synthesis of 20-HETE, DDMS (50 microM; 0 +/- 4%) and HET-0016 (1 microM; +6 +/- 4%). The constrictor response to hemoglobin transfusion was not blocked by an inhibitor of nitric oxide (NO) synthase, and the inhibition of the constrictor response by DDMS was not altered by coadministration of the NO synthase inhibitor. We conclude 1) that activation of K(ATP) channels contributes to pial arteriolar dilation during anemia, whereas 2) constriction to polymeric hemoglobin transfusion at reduced hematocrit represents a regulatory response that limits increased O2 transport and that is mediated by increased formation of 20-HETE, rather than by NO scavenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号