共查询到20条相似文献,搜索用时 62 毫秒
1.
Tomio Umemoto Savitha Subramanian Yilei Ding Leela Goodspeed Shari Wang Chang Yeop Han Antonio Sta. Teresa Jinkyu Kim Kevin D. O'Brien Alan Chait 《Journal of lipid research》2012,53(11):2380-2389
Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins. 相似文献
2.
Chandak PG Obrowsky S Radovic B Doddapattar P Aflaki E Kratzer A Doshi LS Povoden S Ahammer H Hoefler G Levak-Frank S Kratky D 《Biochimica et biophysica acta》2011,1811(12):1011-1020
Triacylglycerols (TG) are the major storage molecules of metabolic energy and fatty acids in several tissues. The final step in TG biosynthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. Lack of whole body DGAT1 is associated with reduced lipid-induced inflammation. Since one major component of atherosclerosis is chronic inflammation we hypothesized that DGAT1 deficiency might ameliorate atherosclerotic lesion development. We therefore crossbred Apolipoprotein E-deficient (ApoE(-/-)) mice with Dgat1(-/-) mice. ApoE(-/-) and ApoE(-/-)Dgat1(-/-) mice were fed Western-type diet (WTD) for 9weeks and thereafter examined for plaque formation. The mean atherosclerotic lesion area was substantially reduced in ApoE(-/-)Dgat1(-/-) compared with ApoE(-/-) mice in en face and aortic valve section analyses. The reduced lesion size was associated with decreased cholesterol uptake and absorption by the intestine, reduced plasma TG and cholesterol concentrations and increased cholesterol efflux from macrophages. The expression of adhesion molecules was reduced in aortas of ApoE(-/-)Dgat1(-/-) mice, which might be the reason for less migration capacities of monocytes and macrophages and the observed decreased amount of macrophages within the plaques. From our results we conclude that the lack of DGAT1 is atheroprotective, implicating an additional application of DGAT1 inhibitors with regard to maintaining cholesterol homeostasis and attenuating atherosclerosis. 相似文献
3.
The intestinal fatty acid binding protein (I-FABP) belongs to a family of 15 kDa clamshell-like proteins that are found in many different tissues. So far, nine types have been identified. Their primary structures are highly conserved between species but somewhat less so among the different types. The function of these proteins, many of which are highly expressed, is not well understood. Their ability to bind lipid ligands suggests a role in lipid metabolism, but direct evidence for this idea is still lacking. We tested the hypothesis that I-FABP serves an essential role in the assimilation of dietary fatty acids by disrupting its gene (Fabpi) in the mouse. We discovered that Fabpi-/- mice are viable, but they display alterations in body weight and are hyperinsulinemic. Male Fabpi-/- mice had elevated plasma triacylglycerols and weighed more regardless of the dietary fat content. In contrast, female Fabpi-/- mice gained less weight in response to a high-fat diet. The results clearly demonstrate that I-FABP is not essential for dietary fat absorption. We propose that I-FABP functions as a lipid-sensing component of energy homeostasis that alters body weight gain in a gender-specific fashion. 相似文献
4.
5.
Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice 总被引:9,自引:0,他引:9
Mardones P Quiñones V Amigo L Moreno M Miquel JF Schwarz M Miettinen HE Trigatti B Krieger M VanPatten S Cohen DE Rigotti A 《Journal of lipid research》2001,42(2):170-180
The scavenger receptor class B type I (SR-BI), which is expressed in the liver and intestine, plays a critical role in cholesterol metabolism in rodents. While hepatic SR-BI expression controls high density lipoprotein (HDL) cholesterol metabolism, intestinal SR-BI has been proposed to facilitate cholesterol absorption. To evaluate further the relevance of SR-BI in the enterohepatic circulation of cholesterol and bile salts, we studied biliary lipid secretion, hepatic sterol content and synthesis, bile acid metabolism, fecal neutral sterol excretion, and intestinal cholesterol absorption in SR-BI knockout mice. SR-BI deficiency selectively impaired biliary cholesterol secretion, without concomitant changes in either biliary bile acid or phospholipid secretion. Hepatic total and unesterified cholesterol contents were slightly increased in SR-BI-deficient mice, while sterol synthesis was not significantly changed. Bile acid pool size and composition, as well as fecal bile acid excretion, were not altered in SR-BI knockout mice. Intestinal cholesterol absorption was somewhat increased and fecal sterol excretion was slightly decreased in SR-BI knockout mice relative to controls. These findings establish the critical role of hepatic SR-BI expression in selectively controlling the utilization of HDL cholesterol for biliary secretion. In contrast, SR-BI expression is not essential for intestinal cholesterol absorption. 相似文献
6.
Dirkx E Schwenk RW Coumans WA Hoebers N Angin Y Viollet B Bonen A van Eys GJ Glatz JF Luiken JJ 《The Journal of biological chemistry》2012,287(8):5871-5881
Increased contraction enhances substrate uptake into cardiomyocytes via translocation of the glucose transporter GLUT4 and the long chain fatty acid (LCFA) transporter CD36 from intracellular stores to the sarcolemma. Additionally, contraction activates the signaling enzymes AMP-activated protein kinase (AMPK) and protein kinase D1 (PKD1). Although AMPK has been implicated in contraction-induced GLUT4 and CD36 translocation in cardiomyocytes, the precise role of PKD1 in these processes is not known. To study this, we triggered contractions in cardiomyocytes by electric field stimulation (EFS). First, the role of PKD1 in GLUT4 and CD36 translocation was defined. In PKD1 siRNA-treated cardiomyocytes as well as cardiomyocytes from PKD1 knock-out mice, EFS-induced translocation of GLUT4, but not CD36, was abolished. In AMPK siRNA-treated cardiomyocytes and cardiomyocytes from AMPKα2 knock-out mice, both GLUT4 and CD36 translocation were abrogated. Hence, unlike AMPK, PKD1 is selectively involved in glucose uptake. Second, we analyzed upstream factors in PKD1 activation. Cardiomyocyte contractions enhanced reactive oxygen species (ROS) production. Using ROS scavengers, we found that PKD1 signaling and glucose uptake are more sensitive to changes in intracellular ROS than AMPK signaling or LCFA uptake. Furthermore, silencing of death-activated protein kinase (DAPK) abrogated EFS-induced GLUT4 but not CD36 translocation. Finally, possible links between PKD1 and AMPK signaling were investigated. PKD1 silencing did not affect AMPK activation. Reciprocally, AMPK silencing did not alter PKD1 activation. In conclusion, we present a novel contraction-induced ROS-DAPK-PKD1 pathway in cardiomyocytes. This pathway is activated separately from AMPK and mediates GLUT4 translocation/glucose uptake, but not CD36 translocation/LCFA uptake. 相似文献
7.
Knöpfel M Davies JP Duong PT Kvaernø L Carreira EM Phillips MC Ioannou YA Hauser H 《Biochimica et biophysica acta》2007,1771(9):1140-1147
We compared cholesterol uptake into brush border membrane vesicles (BBMV) made from the small intestines of either wild-type or Niemann-Pick C1-like 1 (NPC1L1) knockout mice to elucidate the contribution of NPC1L1 to facilitated uptake; this uptake involves cholesterol transport from lipid donor particles into the BBM of enterocytes. The lack of NPC1L1 in the BBM of the knockout mice had no effect on the rate of cholesterol uptake. It follows that NPC1L1 cannot be the putative high-affinity, ezetimibe-sensitive cholesterol transporter in the brush border membrane (BBM) as has been proposed by others. The following findings substantiate this conclusion: (I) NPC1L1 is not a brush border membrane protein but very likely localized to intracellular membranes; (II) the cholesterol absorption inhibitor ezetimibe and its analogues reduce cholesterol uptake to the same extent in wild-type and NPC1L1 knockout mouse BBMV. These findings indicate that the prevailing belief that NPC1L1 facilitates intestinal cholesterol uptake into the BBM and its interaction with ezetimibe is responsible for the inhibition of this process can no longer be sustained. 相似文献
8.
A genetic mapping strategy was employed to identify chromosomal regions harboring genes that influence the absorption of intestinal cholesterol in the mouse. Analysis of seven inbred strains of male mice (129P3, AKR, BALB/c, C3H/He, C57BL/6, DBA/2, and SJL, all from Jackson Laboratories) revealed substantial differences in their abilities to absorb a bolus of cholesterol delivered by gavage. Crosses between high (AKR, 129) and low (DBA/2, SJL) absorbing strains revealed evidence for the presence of dominant genes that increase and decrease cholesterol absorption. Backcrosses between F1 offspring and parental strains (DBA/2xAKD2F1 and 129xSJL129F1) followed by linkage analyses revealed four quantitative trait loci that influenced cholesterol absorption. Analyses of recombinant inbred strains identified an additional three loci affecting this phenotype. These seven quantitative trait loci, which map to different chromosomes and are termed Cholesterol absorption 1-7 (Chab1-7) loci, together influence the absorption of intestinal cholesterol in mice and are likely to be involved in different steps of this complex pathway. 相似文献
9.
10.
Larsson S Wierup N Sundler F Eliasson L Holm C 《Biochemical and biophysical research communications》2008,376(3):558-562
The observations that hormone-sensitive lipase (HSL) is located in close association to insulin granules in β-cells and that cholesterol ester hydrolase activity is completely blunted in islets of HSL null mice made us hypothesize that the role of HSL in β-cells is to provide cholesterol for the exocytosis of insulin. To test this hypothesis, wild type (wt) and HSL null islets were depleted of plasma membrane cholesterol using methyl-β-cyclodextrin (mβcd). A significant reduction in insulin secretion from HSL null islets was observed whereas wt islets were unaffected. Using synaptosomal protein of 25 kDa (SNAP-25) as indicator of cholesterol-rich microdomains, confocal microscopy was used to show that HSL null β-cells treated with mβcd contained fewer clusters than wt β-cells. These results indicate that HSL plays an important role in insulin secretion by providing free cholesterol for the formation and maintenance of cholesterol-rich patches for docking of SNARE-proteins to the plasma membrane. 相似文献
11.
CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice 总被引:1,自引:0,他引:1
Drover VA Nguyen DV Bastie CC Darlington YF Abumrad NA Pessin JE London E Sahoo D Phillips MC 《The Journal of biological chemistry》2008,283(19):13108-13115
The intestine has an extraordinary capacity for fatty acid (FA) absorption. Numerous candidates for a protein-mediated mechanism of dietary FA absorption have been proposed, but firm evidence for this process has remained elusive. Here we show that the scavenger receptor CD36 is required both for the uptake of very long chain FAs (VLCFAs) in cultured cells and the absorption of dietary VLCFAs in mice. We found that the fraction of CD36-dependent saturated fatty acid association/absorption in these model systems is proportional to the FA chain length and specific for fatty acids and fatty alcohols containing very long saturated acyl chains. Moreover, intestinal VLCFA absorption is completely abolished in CD36-null mice fed a high fat diet, illustrating that the predominant mechanism for VLCFA absorption is CD36-dependent. Together, these findings represent the first direct evidence for protein-facilitated FA absorption in the intestine and identify a novel therapeutic target for the treatment of diseases characterized by elevated VLCFA levels. 相似文献
12.
Solubilization of cholesterol in the intestinal lumen by bile acids and the subsequent formation of mixed micelles is an important step in the absorption of cholesterol. We propose that oxidized fatty acids (ox-FA) may mimic bile acids and form mixed micelles with cholesterol much more efficiently, as compared with unoxidized fatty acids, thereby increasing there absorption. In an in vitro assay at concentrations of 1, 5, and 10 mM, oxidized linoleic acid (ox-18:2) increased the solubilization of cholesterol (3.06, 8.16, and 15.46 nmol/ml) in a dose dependent manner compared with a 10 mM unoxidized linoleic acid (unox-18:2 at 0.97 nmol/ml). The uptake of cholesterol solubilized in the presence of ox-18:2 by Caco-2 cells and everted rat intestinal sacs was greater (1.78 and 1.95 nmol/ml respectively) as compared with the cholesterol solubilized in the presence of unox-18:2 (0.29 and 0.61 nmol/ml; P = 0.05). In addition, when LDL receptor deficient mice were fed a high fat diet along with ox-18:2 their plasma cholesterol levels were greater than animals fed the high fat diet alone (1290 mg/dl vs. 1549 mg/dl, P = 0.013). From these results, we suggest that ox-FA, by enhancing the solubilization of luminal cholesterol, increases the uptake of cholesterol that might lead to hypercholesterolemia and atherosclerosis. 相似文献
13.
Comparison of the intestinal uptake of cholesterol,plant sterols,and stanols in mice 总被引:5,自引:0,他引:5
The recent identification of the aberrant transport proteins ABCG5 and ABCG8 resulting in sitosterolemia suggests that intestinal uptake of cholesterol is an unselective process, and that discrimination between cholesterol and plant sterols takes place at the level of sterol efflux from the enterocyte. Although plant sterols are structurally very similar to cholesterol, differing only in their side chain length, they are absorbed from the intestine to a markedly lower extent. In order to further evaluate the process of discrimination, three different sterols (cholesterol, campesterol, sitosterol) and their corresponding 5 alpha-stanols (cholestanol, campestanol, sitostanol) were compared concerning their concentration in the proximal small intestine, in serum, and in bile after a single oral dose of deuterated compounds. The data obtained support the hypothesis that i) the uptake of sterols and stanols is an extremely rapid process, ii) discrimination probably takes place on the level of reverse transport back into the gut lumen, iii) plant stanols are taken up, but not absorbed to a measurable extent, and iv) the process of discrimination probably also exists at the level of biliary excretion. The range of structural alterations that decrease intestinal absorption and increase biliary excretion is: 1) campesterol, 2) cholestanol-sitosterol, and 3) campestanol-sitostanol. 相似文献
14.
Freichel M Suh SH Pfeifer A Schweig U Trost C Weissgerber P Biel M Philipp S Freise D Droogmans G Hofmann F Flockerzi V Nilius B 《Nature cell biology》2001,3(2):121-127
Agonist-induced Ca2+ entry into cells by both store-operated channels and channels activated independently of Ca2+-store depletion has been described in various cell types. The molecular structures of these channels are unknown as is, in most cases, their impact on various cellular functions. Here we describe a store-operated Ca2+ current in vascular endothelium and show that endothelial cells of mice deficient in TRP4 (also known as CCE1) lack this current. As a consequence, agonist-induced Ca2+ entry and vasorelaxation is reduced markedly, showing that TRP4 is an indispensable component of store-operated channels in native endothelial cells and that these channels directly provide an Ca2+-entry pathway essentially contributing to the regulation of blood vessel tone. 相似文献
15.
Deanna M Minich Peter J Voshol Rick Havinga Frans Stellaard Folkert Kuipers Roel J Vonk Henkjan J Verkade 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》1999,1441(1):14-22
Biliary phospholipids have been hypothesized to be important for essential fatty acid homeostasis. We tested this hypothesis by investigating the intestinal absorption and the status of linoleic acid in mdr2 Pgp-deficient mice which secrete phospholipid-free bile. In mice homozygous (?/?) for disruption of the mdr2 gene and wild-type (+/+) mice, dietary linoleic acid absorption was determined by 72 h balance techniques. After enteral administration, [13C]-linoleic acid absorption was determined by measuring [13C]-linoleic acid concentrations in feces and in plasma. The status of linoleic acid was determined in plasma and in liver by calculating the molar percentage of linoleic acid and the triene:tetraene ratio. Although plasma concentration of [13C]-linoleic acid at 2 h after enteral administration was significantly lower in (?/?) compared to (+/+) mice (P≤0.05), net intestinal absorption of dietary linoleic acid or of [13C]-linoleic acid was similar in (+/+) and (?/?) mice. Molar percentage of linoleic acid and the triene:tetraene ratio were not different in whole plasma or in liver of (?/?) compared to (+/+) mice. Present data indicate that biliary phospholipids are involved in the rate of appearance in plasma of enterally administered linoleic acid, but are not required for net intestinal absorption or plasma status of linoleic acid. 相似文献
16.
V Burke M Houghton M Gracey 《The Australian journal of experimental biology and medical science》1977,55(4):423-429
The effect of micro-organisms contaminating the upper intestinal contents of malnourished children on intestinal absorption of 3-0 methyl-alpha-D-glucopyranose (3-M.G.) and oleic acid was studied in rats in vivo. Oleci acid absorption was unaffected by non-pathogenic E. coli but decreased by E. coli 0111, Salmonella paratyphi B., Shigella sonnei and Candida sp. This effect was probably explained by intestinal secretion diluting the test solution leading to a decreased diffusion gradient for solubilised fatty acid. Inhibition of sugar absorption occurred with bacterial suspensions of Staphylococcus aureus, Streptococcus faecalis, E. coli and Candida sp. and cell-free preparations of Staphylococcus aureus, Streptococcus faecalis, a non-pathogenic E. coli, Proteus sp., Klebsiella sp., Pseudomonas sp. and Candida sp. These effects were not explained by dilution of the test solution. This indicates that numerous micro-organisms and, in some instances, their cell-free preparations can interfere with intestinal active sugar transport. These findings may be relevant to the production of malabsorption in malnourished children who have a wide variety of micro-organisms contaminating their upper intestinal contents. 相似文献
17.
The present study investigated the role of apolipoprotein E (apoE) phenotype on intestinal cholesterol absorption and cholesterol synthesis. Studies were carried out in eight subjects homozygous for the apoE4 and 12 subjects homozygous for the E2 allele (six normocholesterolemic volunteers and six patients with type III hyperlipoproteinemia). Cholesterol absorption did not differ between the three groups of subjects and averaged 38 +/- 2% (mean +/- SEM) in normolipemic E2/2, 37 +/- 4% in type III hyperlipemic E2/2, and 41 +/- 3% in E4/4 subjects, respectively. Dietary intake of fat and cholesterol had no influence on cholesterol absorption efficiency. A positive correlation between efficiency of cholesterol absorption and the ratio of campesterol to cholesterol in plasma, an indirect marker for cholesterol absorption, was observed after combining the results of the three groups (r = 0.504; P < 0.02). Bile acid and total cholesterol synthesis were also not affected by the different apoE alleles, but the well-known relationship between body weight and cholesterol synthesis was noticed (r = 0.574; P < 0.01). Thus, the present study provides evidence that the efficiency of intestinal absorption and synthesis of cholesterol in humans are not related to the apoE phenotype. 相似文献
18.
Schneeberger EE Vu Q LeBlanc BW Doerschuk CM 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(5):2472-2478
Bone marrow-derived dendritic cell (DC) precursors migrate via the blood stream to peripheral tissues to adopt their sentinel function. To identify factors facilitating their emigration to the lung, mutant mice deficient in E-selectin, P-selectin, E/P-selectin, ICAM-1, or CD18 and their respective controls were examined. DCs and monocytes/macrophages were immunolabeled with M5/114 and MOMA-2 mAbs, respectively, and quantified morphometrically. Of these genotypes, the numbers of DC and MOMA-2+ cells were significantly less only in the lungs of CD18-/- mice by 68 and 35% in alveolar walls and by 28 and 26% in venous walls, respectively. DCs were reduced by 30 and 41% around large and small airways, respectively, but the number of MOMA-2+ cells in these locations was not significantly different from controls. Ablation of a single gene may be associated with augmented expression of other, related gene products. Therefore, we examined the expression of VCAM-1. Increased numbers of arteries exhibited continuous luminal VCAM-1 staining in both CD18-/- and ICAM-1-/- mutants. VCAM-1 expression was absent in pulmonary capillaries and unchanged in veins. These data suggest that under nonperturbing conditions, CD18-mediated adhesion is required for the full complement of DC precursors to accumulate in the lungs. However, the defect in CD18-/- mice is partial, suggesting that CD18-independent adhesion occurs. The alternative pathway may involve VLA-4/VCAM-1 in arteries and venules but not in capillaries. The smaller defect in ICAM-1-/- mice suggests that the CD11/CD18 complex recognizes ligands other than ICAM-1 at some sites. 相似文献
19.
Kelsa E Gabehart Simon G Royce Diego J Maselli Shelley K Miyasato Elaine C Davis Mimi LK Tang Claude Jourdan Le Saux 《Respiratory research》2013,14(1):110
Background
Airway inflammation and airway remodeling are the key contributors to airway hyperresponsiveness (AHR), a characteristic feature of asthma. Both processes are regulated by Transforming Growth Factor (TGF)-β. Caveolin 1 (Cav1) is a membrane bound protein that binds to a variety of receptor and signaling proteins, including the TGF-β receptors. We hypothesized that caveolin-1 deficiency promotes structural alterations of the airways that develop with age will predispose to an increased response to allergen challenge.Methods
AHR was measured in Cav1-deficient and wild-type (WT) mice 1 to 12 months of age to examine the role of Cav1 in AHR and the relative contribution of inflammation and airway remodeling. AHR was then measured in Cav1-/- and WT mice after an ovalbumin-allergen challenge performed at either 2 months of age, when remodeling in Cav1-/- and WT mice was equivalent, and at 6 months of age, when the Cav1-/- mice had established airway remodeling.Results
Cav1-/- mice developed increased thickness of the subepithelial layer and a correspondingly increased AHR as they aged. In addition, allergen-challenged Cav1-/- mice had an increase in AHR greater than WT mice that was largely independent of inflammation. Cav1-/- mice challenged at 6 months of age have decreased AHR compared to those challenged at 2 months with correspondingly decreased BAL IL-4 and IL-5 levels, inflammatory cell counts and percentage of eosinophils. In addition, in response to OVA challenge, the number of goblet cells and α-SMA positive cells in the airways were reduced with age in response to OVA challenge in contrast to an increased collagen deposition further enhanced in absence of Cav1.Conclusion
A lack of Cav1 contributed to the thickness of the subepithelial layer in mice as they aged resulting in an increase in AHR independent of inflammation, demonstrating the important contribution of airway structural changes to AHR. In addition, age in the Cav1-/- mice is a contributing factor to airway remodeling in the response to allergen challenge. 相似文献20.
Khatri IA Ho C Specian RD Forstner JF 《American journal of physiology. Gastrointestinal and liver physiology》2001,280(6):G1321-G1330
Human mucin MUC3 and rodent Muc3 are widely assumed to represent secretory mucins expressed in columnar and goblet cells of the intestine. Using a 3'-oligonucleotide probe and in situ hybridization, we observed expression of rat Muc3 mostly in columnar cells. Two antibodies specific for COOH-terminal epitopes of Muc3 localized to apical membranes and cytoplasm of columnar cells. An antibody to the tandem repeat (TR) sequence (TTTPDV)3, however, localized to both columnar and goblet cells. On CsCl gradients, Muc3 appeared in both light- and heavy-density fractions. The lighter species was immunoreactive with all three antibodies, whereas the heavier species reacted only with anti-TR antibody. Thus Muc3 is expressed in two forms, a full-length membrane-associated form found in columnar cells (light density) and a carboxyl-truncated soluble form present in goblet cells (heavy density). In a mouse model of human cystic fibrosis, both soluble Muc3 and goblet cell Muc2 were increased in amount and hypersecreted. Thus Muc2 and Muc3 contribute to the excess intestinal luminal mucus of cystic fibrosis mice. 相似文献