首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Observations presented here describe changes in the growth ofLycopersicon esculentum Mill., cv. ‘Better Bush’,at the onset of root-restriction stress. Plants were grown ineither 1500 cm3 (control) or 25 cm3 (treated) containers ina flow-through hydroponic culture system (FTS). Seeds were imbibed,germinated, held for 13 d in sterile germination bags, thenplaced into the FTS and designated day zero plants. Plants grownin the FTS were harvested, every 7 d, from day 11 to day 46.Plant height, root and shoot weights, leaf areas, leaf lengths,branching and flowering were measured to illustrate morphologicalchanges that occurred in response to root-restriction stress.Plants restricted to a 25 cm3 root volume experienced a markedstress after 18 d in the FTS. A reduction in leaf elongationwas evident and preceded the time (prior to day 25) when maximumdry weights were attained by restricted root systems. Controlplants had greater leaf areas and plant dry weights than thoseof root-restricted plants after day 18. Treated plants showedno significant increase in dry weights from day 32 to the endof the experiment. Between day 18 and 25 the root: shoot ratiofor the treated plants dropped below that of the controls. Adventitiousrooting was evident in treated plants by day 25. Roots of thetreated plants showed an apparent waterlogging indicated bybrowning of roots by day 32. Root turnover followed as the primaryroot system was replaced by adventitious roots. The number ofbranches or flowers did not differ between control and treatedplants. The timing of the events described here can be usedto further the study of specific physiological responses oftomato plants to root-restriction stress.  相似文献   

2.
The extended period of ethylene release from ethephon (2-chloroethylphosphonicacid) after application to intact tomato plants has provideda model system in which the effects of ethylene on photosyntheticmetabolism and carbon partitioning has been studied. Ethylenerelease from leaf tissue after ethephon treatment was 10 timesgreater than that from untreated control leaves. The specificactivity of 14C2H4 released from [14C] ethephon remained constantover several days demonstrating that the ethylene was derivedfrom the applied ethephon. The ethephon-treated plants exhibitedextreme epinasty of the leaves and 24 h after application theflower buds in the first visible cluster had abscised, leafexpansion at the apex had ceased and developing adventitiousroots were visible on the lower stem. Rates of steady-state photosynthesis, respiration, photorespirationand transpiration were the same in treated and control leaves24 h after ethephon application. Both treated and control leavespartitioned similar proportions of newly-fixed 14C from 14CO2into neutral (46.4%), acidic (14.0%), basic (5.0%) and insoluble(34.0%) leaf fractions under steady-state conditions. The speedof 11C-assimilate movement in the stems of control plants (3.62±0.42cm min-1 towards the apex and 4.03±0.15 cm min-1 towardsthe roots) was more rapid than in the ethephon-treated plants(2.90±0.31 cm min-1 upwards and 2.59±0.22 cm min-1downwards). Furthermore, in the control plants 20.0±5.4%of the 14C exported to the plant from the source leaf was transportedtowards the developing flower cluster and young leaves. Twenty-fourhours after ethephon application only 6.5 ±1.7% of theexported 14C was translocated towards the shoot. Contrary tosome reports ethylene did not affect steady-state gas exchangeprocesses while carbon partitioning was significantly alteredindicating that ethylene effects on photosynthetic carbon metabolismare indirect and not due to direct effects on photosyntheticprocesses per se. Key words: Ethylene, photosynthesis, partitioning  相似文献   

3.
Klee HJ 《Plant physiology》1993,102(3):911-916
The physiological effects of reduced ethylene synthesis in a transgenic tomato (Lycopersicon esculentum) line expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme have been examined. Fruit from the transgenic line 5673 ripen significantly slower than control fruit when removed from the vine early in ripening. In contrast, fruit that remain attached to the plants ripen much more rapidly, exhibiting little delay relative to the control. Ethylene determinations on attached fruit revealed that there was significantly more internal ethylene in attached than detached fruit. The higher ethylene content can fully account for the observed faster on-the-vine ripening. All of the data are consistent with a catalytic role for ethylene in promoting many, although not all, aspects of fruit ripening. Biochemical analyses of transgenic fruit indicated no significant differences from controls in the levels of ACC oxidase or polygalacturonase. Because transgenic fruit are significantly firmer than controls, this last result indicates that other enzymes may have a significant role in fruit softening.  相似文献   

4.
Ethylene production rates and tissue ethylene concentrations were determined for the single-gene, Epinastic (Epi) tomato (Lycopersicon esculentum Mill.) mutant, and its parent, cv VFN8. The Epi phenotype was characterized by severe leaf epinasty, thickened stems and petioles, and a compact growth habit. In 4-day-old seedlings, ethylene production was significantly higher in Epi than in VFN8. Ethylene production rates also were higher for excised root, hypocotyl, cotyledon, and shoot tissue of 14-day-old Epi seedlings as compared with VFN8. The greatest difference in the ethylene production rate was observed in excised Epi shoot tissue, which was more than 2.5 times higher than in VFN8. Tissue ethylene concentrations of 19−, 25−, and 31-day-old Epi plants were 8, 172, and 307% higher than for VFN8, corresponding to increasing expression of the Epi phenotypic characteristics with age. The highest ethylene concentrations occurred in the shoot apex of both genotypes. Higher ethylene concentrations in Epi resulted from greater 1-aminocyclopropane-1-carboxylic acid content rather than increased ethylene-forming enzyme activity. The elevated ethylene levels in Epi did not result from increased auxin sensitivity. The sensitivity of root growth to inhibition by ethylene did not differ between VFN8 and Epi. Although elevated levels of ethylene in Epi plants apparently exacerbate its epinastic growth characteristics, other evidence indicates that this may not be the fundamental lesion. This mutant may provide a unique system for investigating the regulation of ethylene biosynthesis and the role of target cell types in plant development.  相似文献   

5.
Nitrogen-fixing bacterial isolate from the intercellular spaces of tomato root cortical cells was studied for the location of nif genes on the chromosomal or plasmid DNA. The bacterial isolate showed two plasmids of approximate molecular sizes of 220 and 120 kb. Klebsiella pneumoniae nif HDK probe hybridized with the chromosomal DNA and not with the plasmid DNA thereby showing that nif genes are localised on the chromosomal DNA.  相似文献   

6.
The chloroplast to chromoplast transition during tomato (Lycopersicon esculentum Mill.) fruit ripening is characterized by a dramatic change in plastid structure and function. We have asked whether this process is mediated by an increase in the steady-state level of RNA for plastid targeted proteins. Assays for import of radiolabeled translation products into isolated pea (Pisum sativum L.) chloroplasts were used to monitor levels of chromoplast-targeted proteins at four stages of tomato fruit development. We have found striking increases during development in levels of translatable RNA for two such proteins. Additionally, the import of in vitro translation products was examined for seven individual cDNA clones known to encode RNA that increase during fruit ripening. Three of these clones produced in vitro translation products that were imported into pea chloroplasts. This implies that there is synthesis and import of new proteins during the transition from chloroplast to chromoplast and that the plastid conversion is an active developmental program rather than a simple decline in synthesis of the photosynthetic apparatus. Furthermore, our results demonstrate the utility of this method for identification of structural genes involved in plastid morphogenesis.  相似文献   

7.
Although it is well established that the root growth in manyspecies is very sensitive to mechanical impedance or to confinementin small volumes, little is known about the consequent effectson growth of the whole plant and the mechanisms involved. Thiswork investigated the effects of root confinement on the waterrelations, growth and assimilate partitioning of tomato (Lycopersiconesculentum Mill) grown in solution culture. Six-week old plants were transferred to either 4500 ml or 75ml containers filled with nutrient solution, and allowed togrow for 14 d. Transpiration, leaf-air temperature differences,and leaf diffusive resistances were measured frequently. Leaf,stem and shoot dry masses, leaf area and root length, were estimatedwhen the treatments were imposed and at the end of the experiment.After 14 d growth the root and shoot hydraulic resistances wereestimated from measurements of leaf water potential and transpirationrate, using a steady-state technique. Confining root growth to the small containers substantiallyreduced shoot and root growth and increased the proportion oftotal dry matter present in the stems. These effects were dueto drought stress. The hydraulic resistance of the root systemwas greatest in the confined plants. This led to more negativeleaf water potentials, increased leaf diffusive resistance,and reduced the net assimilation rate by a factor of 2.5. Transpirationper unit leaf area was less affected. However, cumulative transpirationwas also reduced by a factor of 2.5. mostly because of the smallerleaf area on the confined plants. Root hydraulic resistivitywas measured at 3.1 x 1012s m–1 in the control treatment,but increased to 3.9 x 1012 s m–1 for roots in the smallcontainer. The mechanisms by which root confinement caused drought stressand disrupted the pattern of assimilate partitioning are discussedin detail. Assimilate partitioning, Lycopersicon esculentum, root confinement, plant growth, root growth, root resistance, shoot resistance, tomato, transpiration, water-use efficiency  相似文献   

8.
We have characterized the stimulation of ethylene production by galactose in tomatoes (Lycopersicon esculentum Mill.). The effect of concentration was studied by infiltrating 0, 4, 40, 100, 200, 400, or 800 micrograms galactose for each gram of fresh fruit weight into mature green `Rutgers' fruit. Both 400 and 800 micrograms per gram fresh weight consistently stimulated a transient increase in ethylene approximately 25 hours after infiltration; the lower concentrations did not. Carbon dioxide evolution of fruit infiltrated with 400 to 800 micrograms per gram fresh weight was greater than that of lower concentrations. The ripening mutants, rin and nor, also showed the transient increase in ethylene and elevated CO2 evolution by 400 micrograms per gram fresh weight galactose. 1-Aminocyclopropane-1-carboxylic acid (ACC) content and ACC-synthase activity increased concurrently with ethylene production. However, galactose did not stimulate ACC-synthase activity in vitro. The infiltrated galactose in pericarp tissue was rapidly metabolized, decreasing to endogenous levels within 50 hours. Infiltrated galacturonic acid, dulcitol, and mannose stimulated transient increases in ethylene production similar to that of galactose. The following sugars produced no response: sucrose, fructose, glucose, rhamnose, arabinose, xylose, raffinose, lactose, and sorbitol.  相似文献   

9.
10.
Leaf and whole plant gas exchange rates of Lycopersicon esculentumMill, were studied during several days of continuous exposureto ethylene. Steady-state photosynthesis and transpiration ratesof control and ethylene-treated individual leaves were equivalent.However, the photosynthesis and transpiration rates of treatedleaves required at least five times longer to reach 50% of thesteady-state rate. This induction lag was attributed to ethylene—inducedleaf epinasty and temporary acclimation to lower incident lightlevels immediately prior to measurement of gas exchange. Thewhole plant net carbon exchange rate (NCER) of a representativetreated plant was also reduced by 51% after 24 h exposure toethylene relative to both its pre-treatment rate and that ofthe control. Ethylene exposure reduced the growth rate of thetreated plant by 50% when expressed as carbon (C) gain. Theinhibition of NCER and growth rate associated with epinastywas completely reversed when the epinastic leaves were returnedto their original positions and light interception was re-established.The results demonstrate that the inhibition of whole plant CO2assimilation is indirect and due to reduced light interceptionby epinastic leaves. Morphological changes caused by environmentalethylene are thus shown to reduce plant C accumulation withoutinhibiting leaf photosynthesis processes per se. Key words: Ethylene, carbon assimilation, growth  相似文献   

11.
Ammonium (NH4+) nutrition inhibits water uptake and root exudation and decreases leaf water potential of tomato plants grown in solution culture. This inhibition is readily reversible by NO3 for short term exposures to NH4+; however, recovery is delayed following long term exposures.  相似文献   

12.
The effect of applied direct electrical currents (3–7µA) on the levels of indoleacetic acid (IAA) and peroxidasein tomato plants was determined. Six-week-old treated and controltomato plants were divided into four parts (petiole, leaf, root,and internode). The levels of IAA and peroxidase were higherin the treated tissues (leaf and petiole) compared to the controls.There was not a significant difference in peroxidase levelsin internodal tissue between treated and control plants; however,the peroxidase level in treated root tissue was lower than incontrol plants. It is suggested that small currents may alterthe levels of IAA and peroxidase in different plant tissues.  相似文献   

13.
14.
Two gibberellin-like substances were found in the acidic fractionof shoot extracts of the tomato (Lycopersicon esculentum Mill.,cultivar Potentate). These were resolved by paper chromotographywith iso-propanol/ammonia/water (10:1:1) as the developing solventbut not with n-butanol/1.5 N ammonia (3:1). Both substanceswere active in the dwarf maize bioassay on mutants d-1, d-2,d-3, and d-5, and appeared to be more active on d-5 than d-1.Neither was active in the Meteor Pea assay. Neutral and basicfractions were inactive. The relative amounts of these two substances varied accordingto the age of the tissues from which they were extracted andthis feature is discussed in relation to future studies on thephysiology of gibberellin-like substances in vivo.  相似文献   

15.
16.
BARLOW  P. W. 《Annals of botany》1992,69(6):533-543
Cultured root apices of tomato bearing the gib-I mutation, whichreduces the levels of endogenous gibberellins, grew slower andwere thicker than wild-type contols. This was the result ofshorter and broader cells in the menstem of the mutant. Cellsof both cortex and stele were affected, but this did not causeany alteration to the volume fraction occupied by these twotissues in the root meristem. Root caps were longer in the mutantand there were also more layers of rhizodermis. All these effectscould be reproduced in wild-type roots by addition of 0.1µM2S, 3S paclobutrazol (an inhibitor of gibberellin biosynthesis)to the culture medium and could be normalized in mutant rootsby 0.1 µM GA3. Cell doubling times in the proximal regionof the meristem were similar in mutant and wild-type roots,but were faster in both the quiescent centre (QC) and the capmeristem of the mutant. This latter feature of the mutant rootsis likely to be the cause of their longer caps, while the fasterrate of division in the QC accounts for the additional tiersof cells that were found to build up in the cortical portionof this zone These additional tiers failed to form in mutantroots grown in GA3, but they could be induced in wild-type rootsby 2S, 3S paclobutrazol. These results suggest that endogenousgibberellins may be partly responsible for the slow rate ofcell growth and proliferation in the QC. Gibberellins, gib-I mutation, Lycopersicon esculentum, meristem, roots, 2S, 3S paclobutrazol, quiescent centre, tomato  相似文献   

17.
Tissue Culture Studies of Tomato (Lycopersicon esculentum)   总被引:1,自引:0,他引:1  
Tomato is a major vegetable crop that has achieved tremendous popularity over the last century. It is grown in almost every country of the world. Development of protocols for in vitro selection can provide new advances for the production of stress tolerant cultivars. Techniques have been optimised for the production of haploids and somatic hybrids. Attempts have also been made to transfer the higher regenerative ability of wild varieties to cultivated tomatoes. Although, some information is available on the morphogenesis of tomato, the techniques have not been developed to a level at which they can be utilised in large-scale multiplication of commercially important cultivars. The morphogenesis response seems to be highly dependent PGRs used in the media, which is again cultivar and genotypic specific. Somatic embryogenesis in tomato is still at its infancy, and efficient procedures for large-scale production via somatic embryogenesis are yet to be developed. Genetic stability of the tissue culture raised tomato plants also needs to be addressed. The use of a combination of molecular and conventional breeding techniques could be the option for the development of cultivars resistant to biotic and abiotic stresses. This paper reviews the advances made in various aspects of tissue culture in tomato. It also discusses the issues that still need to be addressed to utilise the full potential of plant tissue culture techniques in genetic improvement and mass propagation of tomato.  相似文献   

18.
19.
Brecht JK  Huber DJ 《Plant physiology》1988,88(4):1037-1041
Enzymically active cell wall from ripe tomato (Lycopersicon esculentum Mill.) fruit pericarp release uronic acids through the action of wall-bound polygalacturonase. The potential involvement of products of wall hydrolysis in the induction of ethylene synthesis during tomato ripening was investigated by vacuum infiltrating preclimacteric (green) fruit with solutions containing pectin fragments enzymically released from cell wall from ripe fruit. Ripening initiation was accelerated in pectin-infiltrated fruit compared to control (buffer-infiltrated) fruit as measured by initiation of climacteric CO2 and ethylene production and appearance of red color. The response to infiltration was maximum at a concentration of 25 micrograms pectin per fruit; higher concentrations (up to 125 micrograms per fruit) had no additional effect. When products released from isolated cell wall from ripe pericarp were separated on Bio-Gel P-2 and specific size classes infiltrated into preclimacteric fruit, ripening-promotive activity was found only in the larger (degree of polymerization >8) fragments. Products released from pectin derived from preclimacteric pericarp upon treatment with polygalacturonase from ripe pericarp did not stimulate ripening when infiltrated into preclimacteric fruit.  相似文献   

20.
In contrast to some previous reports on the growth of the ABA-deficientwilty mutants of tomato, growth was at least as rapid in themutants as in the wild type, as long as an adequate plant waterstatus was maintained by growing the plants under mist. Moreover,shoot extension was greater and the rate of leaf productionmore rapid in the mutants. Stomatal changes in response to environmentand to time in the light-dark cycle were generally similar inboth wilty mutants and the wild type, though the wild-type weregenerally more closed. Grafting experiments confirmed that thegenotype of the shoot was dominant in determining stomatal aperture,though wild-type rootstocks could cause a slight reduction inthe stomatal conductance of mutant leaves. The effect on plantwater relations of draughting only part of the root system wasinvestigated in a ‘split-root’ experiment. Withholdingwater from only part of the root system was found to lower significantlythe mean leaf water potential, even though the potential evaporationrate was kept very small. Key words: Abscisic acid, stomata, tomato  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号