首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferguson SH  Higdon JW 《Oecologia》2006,150(2):318-329
Pinnipeds display a remarkable variation in life history adaptations while successfully inhabiting almost every marine environment. We explore how they have done this by grouping the world’s pinniped species according to their environmental conditions, mating systems, lactation strategies, and timing of life histories. Next, we tested whether any of these clusters provide information about risk of extinction (using the International Union for Nature and the Conservation of Natural Resources status ranks). Seals at risk were not characterized by differences in lactation pattern (22% short vs. 46% long), mating system (24% multi-male vs. 35% harems), or timing of life history events (23% fast vs. 42% slow) but did differ based on four environmental groupings. Grouping traits (rather than seals) described two clusters: one that included the environmental trait, primary productivity, and a second one that included all other environmental variables (seasonality, latitude, and temperature). Based on this result and theoretical considerations, we plotted seals according to energy (primary productivity) and variation (seasonality) and found a pattern analogous to that of the same four groups determined by cluster analysis of all environmental variables. Of the two pinniped groups representing low variation (equatorial and high productivity), ten of 21 seal species have been designated at risk, in contrast to none of the 13 seal species adapted to high variation. We conclude that seals appear to be best adapted to seasonal environments and thus, conservation efforts may benefit by concentrating on species inhabiting less variable environments.  相似文献   

2.
Diel vertical migration of Arctic zooplankton during the polar night   总被引:2,自引:0,他引:2  
High-latitude environments show extreme seasonal variation in physical and biological variables. The classic paradigm of Arctic marine ecosystems holds that most biological processes slow down or cease during the polar night. One key process that is generally assumed to cease during winter is diel vertical migration (DVM) of zooplankton. DVM constitutes the largest synchronized movement of biomass on the planet, and is of paramount importance for marine ecosystem function and carbon cycling. Here we present acoustic data that demonstrate a synchronized DVM behaviour of zooplankton that continues throughout the Arctic winter, in both open and ice-covered waters. We argue that even during the polar night, DVM is regulated by diel variations in solar and lunar illumination, which are at intensities far below the threshold of human perception. We also demonstrate that winter DVM is stronger in open waters compared with ice-covered waters. This suggests that the biologically mediated vertical flux of carbon will increase if there is a continued retreat of the Arctic winter sea ice cover.  相似文献   

3.
The winter/spring vertical distributions of polar cod, copepods, and ringed seal were monitored at a 230-m station in ice-covered Franklin Bay. In daytime, polar cod of all sizes (7–95 g) formed a dense aggregation in the deep inverse thermocline (160–230 m, −1.0 to 0°C). From December (polar night) to April (18-h daylight), small polar cod <25 g migrated into the isothermal cold intermediate layer (90–150 m, −1.4°C) at night to avoid visual predation by shallow-diving immature seals. By contrast, large polar cod (25–95 g), with large livers, remained below 180 m at all times, presumably to minimize predation by deep-diving mature seals. The diel vertical migration (DVM) of small polar cod was precisely synchronized with the light/dark cycle and its duration tracked the seasonal lengthening of the photoperiod. The DVM stopped in May coincident with the midnight sun and increased schooling and feeding. We propose that foraging interference and a limited prey supply in the deep aggregation drove the upward re-distribution of small polar cod at night. The bioluminescent copepod Metridia longa could have provided the light needed by polar cod to feed on copepods in the deep aphotic layers.  相似文献   

4.
Before man hunted the large baleen whales to near extinction by the end of the nineteenth century, Arctic ecosystems were strongly influenced by these large predators. Their main prey were zooplankton, among which the calanoid copepod species of the genus Calanus, long considered key elements of polar marine ecosystems, are particularly abundant. These herbivorous zooplankters display a range of adaptations to the highly seasonal environments of the polar oceans, most notably extensive energy reserves and seasonal migrations to deep waters where the non-feeding season is spent in diapause. Classical work in marine ecology has suggested that slow growth, long lifespan and large body size in zooplankton are specific adaptations to life in cold waters with short and unpredictable feeding seasons. Here, we challenge this understanding and, by using an analogy from the evolutionary and contemporary history of the avocado, argue that predation pressure by the now nearly extinct baleen whales was an important driving force in the evolution of life history diversity in the Arctic Calanus complex.  相似文献   

5.
Early lactation parameters are difficult to estimate from commercial dairy records due to the small number of records available before the peak of production. A biological model of lactation was used with weekly milk records from a single Holstein herd to estimate these early lactation parameters and the secretion rate of milk from the average cell throughout lactation. A genetic analysis of the lactation curve parameters, calculated curve characteristics and secretion rate traits was undertaken. Early lactation traits were found to have little genetic variation and effectively zero heritability. Secretion rate traits for milk, protein, lactose and water were all moderately heritable and highly genetically correlated (>0.87) but fat secretion rate had lower genetic correlations with the other secretion rates. A similar pattern of correlations was seen between total lactation yield traits for fat, protein, lactose and water. The genetic correlations between the lactation curve traits and the secretion rate traits were calculated. Total milk yield, peak yield and maximum secretion potential were all highly correlated with milk, lactose and water secretion rates but less so with fat and protein secretion rates. In particular, fat secretion rate had a moderate to low genetic correlation with these lactation curve traits. Persistency of lactation was highly correlated with fat and protein secretion rates, more persistent lactations being associated with lower rates of secretion of these milk components. Similar levels of heritability were found, where trait genetic parameters were directly equivalent to those derived from the same dataset by random regression methods. However, by using a biological model of lactation to analyse lactation traits new insights into the biology of lactation are possible and ways to select cows on a range of lactation traits may be achieved.  相似文献   

6.
Aposematic animals advertise their unprofitability to potential predators with conspicuous coloration, occasionally in combination with other life-history traits. Theory posits that selection on functionally interrelated aposematic characters promotes the unidirectional evolution of these characters, resulting in an increase or decrease in the effectiveness of the signal. To test whether this prediction applies on a microevolutionary scale, the intra- and interpopulational variations in aposematic coloration, behaviour (which enhances the effectiveness of the coloration) and body size of newts, Cynops pyrrhogaster (Urodela: Salamandridae), were investigated. A parallel geographical mosaic of variation in aposematic coloration and behaviour among populations, independent of body size, was found. Newts on islands displayed more conspicuous aposematic traits than those on the mainland, both morphologically and behaviourally. There was no significant relationship between variation in coloration and behaviour within populations. Male newts displayed more conspicuous coloration than females. Surveys of potential predators suggest that variable natural selection at a local scale, such as predation pressure, may primarily be responsible for the microevolution of variable aposematic traits in newts.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 613–622.  相似文献   

7.
 This study reports the findings of an integrated, comprehensive analysis of lactation energetics in harp seals conducted using longitudinal measurements of mass, body composition and milk composition from mother-pup pairs in conjunction with water flux measurements in pups. The nursing period of harp seals is a short, intense and relatively efficient period of energy transfer from mothers to pups. The average daily milk intake for pups was 3.65±0.24 kg which is equivalent to 79.5 MJ of energy. Eighty-one per cent of the energy received in the milk was metabolisable and 66% of the energy was stored by the pups as body tissue. The field metabolic rate of pups was 3.9±0.4 time basal metabolic rate. The pups were growing at a rate of 2.2 kg per day during the nursing period. The distribution of this mass gain varied in terms of tissue composition, depending on the age of the pups, but over the whole nursing period approximately half of the tissue was stored as fat. Harp seal mothers lost an average of 3.1 kg per day during lactation which was composed of 37% water, 50% fat, 11% protein and 2% ash. Mothers spent half of their time during the lactation period actively diving and only one-third of their time on the surface of the ice. Milk compositional changes followed the normal phocid pattern with increasing fat content and decreasing water content as lactation progressed. The mean mass transfer efficiency was 73%. However, this value cannot be used without qualification because female harp seals in this study fed to varying degrees, consuming an estimated 0–4.8 kg of fish per day. Feeding does not appear to be required in order to achieve the energy requirements for lactation, given the energy stores possessed by females, and some females do fast through the entire period so feeding may be considered opportunistic in nature. Accepted: 25 April 1996  相似文献   

8.
The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter‐specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic‐feeding ice‐associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983–1999 and 2000–2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in affecting upper trophic‐level productivity in these marine ecosystems.  相似文献   

9.
Individual specialization (IS), where individuals within populations irrespective of age, sex, and body size are either specialized or generalized in terms of resource use, has implications on ecological niches and food web structure. Niche size and degree of IS of near‐top trophic‐level marine predators have been little studied in polar regions or with latitude. We quantified the large‐scale latitudinal variation of population‐ and individual‐level niche size and IS in ringed seals (Pusa hispida) and beluga whales (Delphinapterus leucas) using stable carbon and nitrogen isotope analysis on 379 paired ringed seal liver and muscle samples and 124 paired beluga skin and muscle samples from eight locations ranging from the low to high Arctic. We characterized both within‐ and between‐individual variation in predator niche size at each location as well as accounting for spatial differences in the isotopic ranges of potential prey. Total isotopic niche width (TINW) for populations of ringed seals and beluga decreased with increasing latitude. Higher TINW values were associated with greater ecological opportunity (i.e., prey diversity) in the prey fish community which mainly consists of Capelin (Mallotus villosus) and Sand lance (Ammodytes sp.) at lower latitudes and Arctic cod (Boreogadus saida) at high latitudes. In beluga, their dietary consistency between tissues also known as the within‐individual component (WIC) increased in a near 1:1 ratio with TINW (slope = 0.84), suggesting dietary generalization, whereas the slope (0.18) of WIC relative to TINW in ringed seals indicated a high degree of individual specialization in ringed seal populations with higher TINWs. Our findings highlight the differences in TINW and level of IS for ringed seals and beluga relative to latitude as a likely response to large‐scale spatial variation in ecological opportunity, suggesting species‐specific variation in dietary plasticity to spatial differences in prey resources and environmental conditions in a rapidly changing ecosystem.  相似文献   

10.
Variation in substrate association types and maximum size of aquatic insects were studied in a vegetated littoral zone of three lake basins. The basins differed from each other in trophic status, biomass of benthivorous fish, and abundance of macrophytes. Four types of substrate association – swimmers, crawlers, semisessiles and burrowers, respectively – were assumed to represent decreasing vulnerability to fish predators. Large-sized species were also hypothesised to be more vulnerable to fish predators. The distributions of species traits were examined in relation to vegetation density. Inferring from ``predation hypothesis' opposite selection pressures on the species traits were expected along the vegetation density. Dense macrophyte beds were thought to be dominated by invertebrate predators and open water by fish predators, since the predation efficiency of fish decreases in complex environments. In the case of invertebrate predator domination, large size and higher activity should be favoured traits among the prey species. Distribution patterns of modes of the two studied traits were explored separately for predatory and non-predatory insects. As expected, swimmers and large-sized crawlers were characteristic of the insect assemblages of dense macrophyte beds. The densities of Odonata, Corixidae, Dytiscidae, Ephemeroptera and Sialidae were higher among macrophytes than in open water, where these insect taxa were possibly depleted by fish. On the other hand, the small-sized and fairly immobile Chironomidae were the most abundant group in open water. These results support the existence of a predator transition zone among littoral vegetation, ranging from domination of invertebrate predation among the dense beds to that of fish predation in open water.  相似文献   

11.
This work aimed to study the sources of variation in productive and reproductive traits of the dairy Sicilo-Sarde ewes and to further investigate the interaction between both classes of traits. After edits, a database containing 5935 lactation records collected during 6 successive years in eight dairy flocks in the North of Tunisia was used. Total milked milk (TMM) in the milking-only period was retained as productive trait. The interval from the start of the mating period to the subsequent lambing (IML) and the lambing status (LS) were designed as reproductive traits. Sicilo-Sarde ewes had an average TMM of 60.93 l (±44.12) during 132.8 days (±46.6) after a suckling period of 100.4 days (±24.9). Average IML was 165.7 days. In a first step, the major factors influencing milk production and reproductive traits were determined. The significant sources of variation identified for TMM were: flock, month of lambing, year of lambing, parity, suckling length, litter size and milking-only length. Flock×month of the start of the mating period, parity, year of mating and litter size were identified as significant factors of variation for IML, while flock×month of the start of the mating period, parity and year of mating were identified as significant sources of variation for LS. In a second step, variance components were estimated using a three traits threshold mixed model, which combined LS as categorical trait and TMM and IML as continuous traits. Repeatability estimates were 0.21 (±0.03) for TMM, 0.09 (±0.02) for IML, and 0.10 (±0.05) for LS. Moreover, TMM and IML were found to be favorably associated for the flock× year of lambing effect (−0.45±0.18) but unfavorably associated for the animal effect (0.20±0.09).  相似文献   

12.

Background

The maintenance of lactation in mammals is the result of a balance between competing signals from mammary development, prolactin signalling and involution pathways. Dairy cattle are an interesting case study to investigate the effect of polymorphisms that affect the function of genes in these pathways. In dairy cattle, lactation yields and milk composition (for example protein percentage and fat percentage) are routinely recorded, and these vary greatly between individuals. In this study, we test 8058 single nucleotide polymorphisms in or close to genes in these pathways for association with milk production traits and determine the proportion of variance explained by each pathway, using data on 16 812 dairy cattle, including Holstein-Friesian and Jersey bulls and cows.

Results

Single nucleotide polymorphisms close to genes in the mammary development, prolactin signalling and involution pathways were significantly associated with milk production traits. The involution pathway explained the largest proportion of genetic variation for production traits. The mammary development pathway also explained additional genetic variation for milk volume, fat percentage and protein percentage.

Conclusions

Genetic variants in the involution pathway explained considerably more genetic variation in milk production traits than expected by chance. Many of the associations for single nucleotide polymorphisms in genes in this pathway have not been detected in conventional genome-wide association studies. The pathway approach used here allowed us to identify some novel candidates for further studies that will be aimed at refining the location of associated genomic regions and identifying polymorphisms contributing to variation in lactation volume and milk composition.  相似文献   

13.
Globally, elevated extinction risk in mammals is strongly associated with large body size. However, in regions where introduced predators exert strong top-down pressure on mammal populations, the selectivity of extinctions may be skewed towards species of intermediate body size, leading to a hump-shaped relationship between size and extinction risk. The existence of this kind of extinction pattern, and its link to predation, has been contentious and difficult to demonstrate. Here, we test the hypothesis of a hump-shaped body size–extinction relationship, using a database of 927 island mammal populations. We show that the size-selectivity of extinctions on many islands has exceeded that expected under null models. On islands with introduced predators, extinctions are biased towards intermediate body sizes, but this bias does not occur on islands without predators. Hence, on islands with a large-bodied mammal fauna, predators are selectively culling species from the lower end of the size distribution, and on islands with a small-bodied fauna they are culling species from the upper end. These findings suggest that it will be difficult to use predictable generalizations about extinction patterns, such as a positive body size–extinction risk association, to anticipate future species declines and plan conservation strategies accordingly.  相似文献   

14.
Mammals adapted to unpredictable and low-energy environments often evolve a “bet-hedging” life history strategy characterized by less costly reproductive outputs over a longer and slower-growing life. In contrast, species adapted to more predictable (i.e., low variation) and higher energy environments may evolve greater fecundity over a shorter and faster-growing life. We tested whether this known interspecific pattern also occurs within a species. We compared life history traits of the ringed seal (Pusa hispida) in the Canadian High Arctic to those closer to the southern limit of the species' circumpolar distribution. We found that northern seals grew slower than southern seals (Brody growth coefficient), achieved a greater asymptotic body weight (82 and 69 kg vs. 74 and 54 kg female and male, respectively), reached sexual maturity later (6.1 years vs. 4.5 years), had lower fecundity (1.8 years vs. 1.3 years interbirth interval), longer average lifespan (5 years vs. 3 years median age), and greater movements (1,269 vs. 681 km). Mating systems also likely differed with northern seals showing morphological evidence of a promiscuous mating system with potential sperm competition as indicated by greater relative testes size. The northern region was also characterized by more unpredictable environmental timing of seasonal events, such as spring sea ice breakup. Life history variation between the intraspecific groups of seals appears to agree with interspecific patterns and provides a better understanding of how species' life history parameters shift in concert with environmental conditions.  相似文献   

15.
Abstract. 1. An experiment was conducted in the laboratory to examine the effects of photoperiod and predation risk on life-history variation in the mayfly Ephemerella subvaria .
2. Both photoperiod and predation risk affected age at maturity significantly but neither factor affected size at maturity. Mayflies perceiving themselves to be late in the growing season matured in fewer days than those perceiving themselves to be early in the growing season. The presence of predators delayed mayfly maturity significantly.
3. These results suggest that the large variation in life-history traits observed in aquatic insects may be attributed partially to seasonality but that other biotic and abiotic factors may also underlie variation in these traits.  相似文献   

16.
In this study we document growth, milk intake and energy consumption in nursing pups of icebreeding grey seals (Halichoerus grypus). Change in body composition of the pups, change in milk composition as lactation progresses, and mass transfer efficiency between nursing mothers and pups are also measured. Mass transfer efficiency between mother-pup pairs (n=8) was 42.5±8.4%. Pups were gaining a daily average of 2.0±0.7 kg (n=12), of which 75% was fat, 3% protein and 22% water. The total water influx was measured to be 43.23±8.07 ml·kg-1·day-1. Average CO2 production was 0.85±0.20 ml·g-1·h-1, which corresponds to a field metabolic rate of 0.55±0.13 MJ·kg-1·day-1, or 4.5±0.9 times the predicted basal metabolic rate based on body size (Kleiber 1975). Water and fat content in the milk changed dramatically as lacation progressed. At day 2 of nursing, fat and water content were 39.5±1.9% and 47.3±1.5%, respectively, while the corresponding figures for day 15 were 59.6±3.6% fat and 28.4±2.6% water. Protein content of the milk remained relatively stable during the lactation period with a value of 11.0±0.8% at day 2 and 10.4±0.3% at day 15. Pups drank an average of 3.5±0.9 kg of milk daily, corresponding to a milk intake of 1.75 kg per kg body mass gained. The average daily energy intake of pups was 82.58±19.80 MJ, while the energy built up daily in the tissue averaged 61.72±22.22 MJ. Thus, pups assimilated 74.7% of the energy they received via milk into body tissue. The lactation energetics of ice-breeding grey seals is very similar to that of their land-breeding counterparts.Abbreviations bm body mass - BMR basal metabolic rate - FMR field metabolic rate - IU international unit - RQ respiration quotient - HTO tritiated water - HT18O doubly labeled water - TBW total body water - VHF very high frequency  相似文献   

17.
We investigated the role of autochthonous and terrestrial carbon in supporting aquatic food webs in the Canadian High Arctic by determining the diet of the dominant primary consumer, aquatic chironomids. These organisms were studied in fresh waters on 3 islands of the Arctic Archipelago (~74–76°N) including barren polar desert watersheds and a polar oasis with lush meadows. Stomach content analysis of 578 larvae indicated that chironomids primarily ingested diatoms and sediment detritus with little variation among most genera. Carbon and nitrogen stable isotope mixing models applied to 2 lakes indicated that benthic algae contributed 68–95% to chironomid diet at a polar desert site and 70–78% at a polar oasis site. Detritus, originating from either phytoplankton or terrestrial sources, also contributed minor amounts to chironomid diet (0–32%). Radiocarbon measurements for the 2 lakes showed that old terrestrial carbon did not support chironomid production. Carbon stable isotope ratios of chironomids in other High Arctic lakes provided further dietary evidence that was consistent with mixing model results. These findings indicate that, in the Canadian High Arctic, chironomids (and fish that consume them) are supported primarily by benthic algae in both polar desert and oasis lakes. In contrast, our review of carbon flow studies for lakes in other Arctic regions of North America shows that terrestrial carbon and phytoplankton can be important energy sources for consumers. This study provides a baseline to detect future climate-related impacts on carbon pathways in High Arctic lakes.  相似文献   

18.
The evolution of striking phenotypes on islands is a well‐known phenomenon, and there has been a long‐standing debate on the patterns of body size evolution on islands. The ecological causes driving divergence in insular populations are, however, poorly understood. Reduced predator fauna is expected to lower escape propensity, increase body size and relax selection for crypsis in small‐bodied, insular prey species. Here, we investigated whether escape behaviour, body size and dorsal coloration have diverged as predicted under predation release in spatially replicated islet and mainland populations of the lizard species Podarcis gaigeae. We show that islet lizards escape approaching observers at shorter distances and are larger than mainland lizards. Additionally, we found evidence for larger between‐population variation in body size among the islet populations than mainland populations. Moreover, islet populations are significantly more divergent in dorsal coloration and match their respective habitats poorer than mainland lizards. These results strongly suggest that predation release on islets has driven population divergence in phenotypic and behavioural traits and that selective release has affected both trait means and variances. Relaxed predation pressure is therefore likely to be one of the major ecological factors driving body size divergence on these islands.  相似文献   

19.
Island biogeography has provided fundamental hypotheses in population genetics, ecology and evolutionary biology. Insular populations usually face different feeding conditions, predation pressure, intraspecific and interspecific competition than continental populations. This so‐called island syndrome can promote the evolution of specific phenotypes like a small (or large) body size and a light (or dark) colouration as well as influence the evolution of sexual dimorphism. To examine whether insularity leads to phenotypic differentiation in a consistent way in a worldwide‐distributed nonmigratory species, we compared body size, body shape and colouration between insular and continental barn owl (Tyto alba) populations by controlling indirectly for phylogeny. This species is suitable because it varies in pheomelanin‐based colouration from reddish‐brown to white, and it displays eumelanic black spots for which the number and size vary between individuals, populations and species. Females are on average darker pheomelanic and display more and larger eumelanic spots than males. Our results show that on islands barn owls exhibited smaller and fewer eumelanic spots and lighter pheomelanic colouration, and shorter wings than on continents. Sexual dimorphism in pheomelanin‐based colouration was less pronounced on islands than continents (i.e. on islands males tended to be as pheomelanic as females), and on small islands owls were redder pheomelanic and smaller in size than owls living on larger islands. Sexual dimorphism in the size of eumelanic spots was more pronounced (i.e. females displayed much larger spots than males) in barn owls living on islands located further away from a continent. Our study indicates that insular conditions drive the evolution towards a lower degree of eumelanism, smaller body size and affects the evolution of sexual dichromatism in melanin‐based colour traits. The effect of insularity was more pronounced on body size and shape than on melanic traits.  相似文献   

20.
Abstract.
  • 1 Despite apparent directional sexual selection in favour of large body size, males of the anthophorine bee Centris pallida remain highly variable in body size.
  • 2 One possible cause of persistent size variation among males is geographic variation in the extent of the large male mating advantage. However, a study of a population in an area not previously investigated revealed that the large male mating advantage was as strong here as it has been elsewhere in other years.
  • 3 Although the reproductive benefits of being large were consistent in populations separated spatially and temporally, the intensity of bird predation on mate-searching males varied greatly between locations.
  • 4 The bee-killing birds focused exclusively on bees which were digging down to meet emerging females or fighting on the ground, never on flying males. Males which were collected on the ground by hand (to simulate avian predation) were significantly larger on average than flying males collected by sweep netting.
  • 5 Therefore, in some location in some years, sexual selection in favour of large body size may be opposed by natural selection exerted by predators, perhaps contributing to the maintenance of size variation in this bee.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号