首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An efficient adventitious shoot regeneration system was developed for pear (Pyrus communis L.), using leaves from in vitro proliferating shoots. Under optimal conditions, bud regeneration frequencies of Comice, Passe-Crassane, Williams and Conference ranged from 60% to 97%, with the mean number of shoots per regenerating leaf ranging from 3.2 to 6.6. Despite the great variability in responses of the different cultivars, in general an initial dark exposure of at least 20 days was required. Ammonium and total nitrogen proved to play an essential role: intermediate NH4 + concentrations were suitable for regeneration. The balance between NH4 + and NO3 - also influenced regeneration; optimal regeneration occured on media with a 1:3 NH4 +/NO3 - ratio. TDZ at 1 M was less efficient than higher concentrations, whatever the NAA level. Finally, length and growth regulator composition of the two phases (induction and expression) influenced the regeneration rate of Conference.Abbreviations BA 6-benzyladenine - EDFS ethylenediamine-tetraacetic acid ferric-sodium salt - IBA 4-indole-3yl-butyric acid - NAA -naphthaleneacetic acid - TDZ thidiazuron (N-phenyl-N-1,2,3-thidiazol-5-ylurea)  相似文献   

2.
Protocols were developed to optimize adventitious shoot regeneration from four southern highbush blueberry cultivars. Leaf explants from 6 week-old shoots of the four cultivars were excised and cultured on woody plant medium each containing thidiazuron (4.54 or 9.08 μM), zeatin (18.2 μM), or zeatin riboside (5.7 or 11.4 μM) either separately or in combination with α-naphthaleneacetic acid at 2.69 μM. Optimum medium for shoot regeneration was genotype-dependent. Efficient regeneration was obtained at frequencies of 88.9% for ‘Jewel’, 87.8% for ‘Emerald’, 53.3% for ‘Jubilee’ and 87.8% for ‘Biloxi’. Leaf explants of newly developed shoots from the cultures having undergone five subcultures had higher regeneration frequencies than those having undergone two subcultures. Regenerated shoots, 80–100% for each cultivar, rooted in 8 weeks after transplantation to soil. The regeneration systems described have potential use in genetic transformation of southern highbush blueberry cultivars.  相似文献   

3.
Adventitious shoot regeneration was observed using leaf-petiole explants from shoot-proliferating cultures of Comet red raspberry (Rubus idaeus L.). A maximum regeneration rate of 70% (3.7 shoots/explant) was obtained using 4.5–9.1 M (1–2 mg l–1) N-phenyl-N-1,2,3-thiadiazol-5-ylurea (thidiazuron or TDZ) with 2.5–4.9 M (0.5–1 mg l–1) 1H-indole-3-butanoic acid (IBA) or 2.3 M (0.5 mg l–1) TDZ with 4.9 M (1 mg l–1) IBA in modified Murashige-Skoog medium. TDZ was more effective than N-(phenylmethyl)-1H-purin-6-amine (BA) at promoting regeneration in combinations tested with IBA (maximum 50% regeneration rate; 1.8 shoots/explant). Variation in the agar concentration or incubation temperature, orientation or scoring of the leaf-petiole explants and use of separate leaf or petiole explants had no effect on shoot regeneration. Incubation in the dark for 1, 2 or 3 weeks prior to growth in the light did not influence the percent regeneration rate but depressed the number of adventitious shoots. Explant source, from micropropagated shoots or greenhouse-grown plants, had an effect on shoot regeneration that was genotype dependent. Only 8 of 22 (36%) raspberry cultivars were capable of regeneration from leaf explants derived from greenhouse-grown plants.  相似文献   

4.
Several culture conditions were examined for promoting efficient plant regeneration from explants of Gentiana. Adventitious shoot regeneration from leaf explants of cv. WSP-3 was very superior on MS medium, compared to B5 medium, supplemented with four cytokinins (TDZ, 4PU-30, BA and zeatin). An auxin / cytokinin combination was required for regeneration. TDZ was the most effective cytokinin, while NAA was more effective than IAA or 2,4-D. Optimum conditions for regeneration from explants (leaf, stem and root) of cv. WSP-3, evaluated in terms of regeneration frequency and number of regenerated shoots per explant, were TDZ and NAA in combination, 5–10 mg/l and 0.1 mg/l for leaf and stem explants, and 10 mg/l and 1 mg/l for root explants, respectively. Application of these conditions to eight other commercial cultivars resulted in 30–100% regeneration from leaf explants. The number of chromosomes in each of ten regenerated plants of each cultivar was diploid, 2n=26. Shoots regenerated in vitro were rooted in phytohormone-free medium and transferred to soil.Abbreviations MS medium Murashige and Skoog's medium (Murashige and Skoog 1962) - B5 medium Gamborg B5 medium (Gamborg et al. 1968) - BA 6-benzylaminopurine - TDZ N-phenyl-N'-1,2,3-thiadiazol-5-yl urea - 4PU-30 N-(2-chloro-4-pyridyl)-N'-phenylurea - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid  相似文献   

5.
An efficient method for the generation of adventitious shoots from the cotyledons of Japanese pear and related species was developed. Cotyledons from seeds of the Japanese pear ??Okusankichi?? and the Asian pea pear ??Hokushimamenashi?? were used to determine the optimum concentrations of phytohormones in the medium. The rates of generation of adventitious shoots and the numbers of adventitious shoots per explant were highest when the media contained 5???M 1-naphthaleneacetic acid combined with 10 or 25???M 6-benzylaminopurine. These growth regulators were used to generate adventitious shoots from the cotyledons of 33 cultivars of Japanese, Chinese, Asian pea, and European pears. A high number of adventitious shoots per explant (1.3?C2.3) and high rates of regeneration of adventitious shoots (60?C76?%) were obtained from the cotyledons of Japanese pears ??Imamuraaki?? and ??Agenosho Shinanashi.?? Although pollination was not controlled, cotyledons from mother trees of old Japanese cultivars and Chinese pears tended to be more regenerable than those from other pear species. Since the rooting ability of the adventitious shoots was very low, micro-grafting was applied to obtain regenerated potted plants from adventitious shoots. Grafted regenerated plants were recovered at a rate of more than 60?%, regardless of cultivar. To our knowledge, this is the first report to evaluate shoot regeneration from cotyledons of major Pyrus species.  相似文献   

6.
Adventitious shoots were successfully regenerated from leaf explants of Gypsophila paniculata L. The efficiency of shoot regeneration for cv. Arbel was tested on 18 media based on Murashige and Skoog basal medium containing different concentrations of thidiazuron or 6-benzylaminopurine in combination with naphthaleneacetic acid. Both explant age and that of the cuttings used as leaf donors affected the regeneration efficiency. The highest efficiency of adventitious shoot regeneration was obtained with the oldest leaves originating from the youngest cutting analyzed; on thidiazuron-containing medium, shoots regenerated on average from 67% of the leaves, with an average of seven shoots per explant. This regeneration procedure was suitable for all six commercial cultivars studied. Regenerated shoots elongated, rooted and successfully acclimatized to the greenhouse where they were grown to flowering. Received: 25 July 1998 / Revision received: 11 November 1996 / Accepted: 30 November 1996  相似文献   

7.
Summary A method has been developed to facilitate shoot formation from leaf explants of almond. Leaves were dissected from micropropagated shoot cultures of the commercial cultivars Nonpareil and Ne Plus Ultra, and sections incubated on Almehdi and Parfitt's (1986) basal medium (AP) with varied plant growth-regulator conditions. Three auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA), and indole-3-butyric acid (IBA), in combination with two cytokinins, benzylaminopurine (BA) and thidiazuron (TDZ), were tested at various concentrations along with casein hydrolysate (CH) to determine, the conditions most conducive to adventitious shoot regeneration. Response to the tested plant growth-regulator conditions varied with genotype. Of the three auxins tested, NAA and IBA induced adventitious shoots from Ne Plus Ultra explants, but only IBA was effective for Nonpareil. For the cytokinins, shoot development from Ne Plus Ultra occurred in the presence of either BA or TDZ, whereas for Nonpareil only TDZ was effective unless CH was incorporated in the basal medium. The inclusion of CH (0.1% w/v) improved callus morphology, and increased regeneration frequencies for both cultivars. Maximum regeneration frequencies for Ne Plus Ultra (44.4%) and Nonpareil (5.5%) were achieved on AP basal salts supplemented with CH, IBA (9.8 μM), and TDZ at 22.7 and 6.8 μM, respectively.  相似文献   

8.
梨叶柄再生不定芽的研究   总被引:9,自引:0,他引:9  
研究获得了梨品种八月红和水晶的叶柄再生不定芽,不定芽由愈伤组织分化形成。诱导叶柄再生不定芽的适宜培养基为NN69+IBA0.5mg/L(八月红)或IAA0.5mg/L(水晶)+TDZ1.0mg/L+蔗糖30g/L+琼脂6.0g.。AgNO3浓度在0.1-1.5mg/L范围对八月红梨叶柄再生有促进作用,培养基中附加AgNO30.5mg/L八月红梨叶柄再生效率最高。  相似文献   

9.
Adventitious shoot regeneration from leaf explants and stem nodes of Lilium   总被引:1,自引:0,他引:1  
A method for the regeneration of lily plantlets (Lilium spp.) through different morphogenic pathways is described. Plant regeneration was obtained from in vitro cultured leaves of four lily hybrids, cultured on Murashige and Skoog's basal medium supplemented with cytokinins (TDZ and BA) and auxins (NAA and IBA) at different concentrations. Direct shoot regeneration occurred with all tested media for the Asiatic lilies `Elite' and `Pollyanna' and also for the Oriental hybrid `Star Gazer'. Callus developed on TDZ-enriched medium from leaf segments of L. longiflorum cv. `Snow Queen' regenerated by direct organogenesis. This occurred on a medium with auxin/ cytokinin balance which was lower than other genotypes. There were fewer problems of sterilization with leaves from sprouted bulbs than in vitro scale culture. This suggests that the leaf-segments obtained in this way could be an alternative to the scales as a source of material for propagation. A protocol for micropropagation based on bulblets from in vitro shoot-tip-derived stem nodes was also used. The development of pseudo-bulbets is particularly advantageous since it allows for structures characterised by absent or low dormancy. Regenerated shoots have been rooted and successfully acclimatized to greenhouse conditions where they flowered after the second year giving plants with true-to-type shape and colour.  相似文献   

10.
The influence of cytokinin thidiazuron (TDZ) and auxin indole-3-acetic acid (IAA) on in vitro shoot organogenesis of fifteen Rhododendron genotypes was investigated and a protocol for high frequency adventitious shoot regeneration from leaf explants was developed. High genotypic variation was observed and regeneration frequencies ranged from 0 to 100 %. Genotype Ovation had the highest number of shoots (26.4 per explant) after 12 weeks on medium with 0.57 μM IAA and 1.20 μM TDZ, but only 65 % of explants regenerated. Catawbiense Grandiflorum had 17.7 shoots per explant and 75 % regeneration on medium with 5.70 μM IAA and 0.45 μM TDZ and Van Werden Poelman had 14.3 shoots per explant and 100 % regeneration on medium with 0 57 μM IAA and 0.45 μM TDZ.  相似文献   

11.
Summary Leaf explants of Sinningia speciosa were cultured in vitro on Murashige and Skoog (MS) basal medium with various growth substances in order to regenerate shoots. On MS medium supplemented with indoleacetic acid (IAA) and kinetin, 80% of the explants produced green callus and 25 to 30 shoots with roots per explant. On MS supplemented with IAA and N6 benzyladenine (BA), 80% of the explants produced green callus and 40 to 50 shoots per explant but lacked roots. After 3–4 mo., these shoots were removed from the initial explants and transferred separately onto MS supplemented with indolebutyric acid for their elongation and successive rooting (3 mo.). Histological studies showed that the callus was associated with mesophyll cell layers, primarily with the spongy parenchyma. The shoots regenerated at the callus surface and were associated with newly differentiated vascular areas. Recurrent regenerations were obtained from leaf explants or apical meristems excised from shoots of the previous subcultures. These explants, as compared to initial cultures, had a high frequency of regeneration and also produced more shoots per explant. Chromosome numbers of root tip cells of the mother plant and of all in vitro-regenerated plants remained constant: 2n=26.  相似文献   

12.
Shoots can be regenerated from leaf explants of most azalea (Rhododendron simsii) cultivars using a two-step protocol with a callus induction and a regeneration phase. This procedure is unsuccessful for a few cultivars, because of excessive callus production. In most such cases, shoot regeneration could be obtained in one step, starting from petioles as explants. Flower colour variations (the induction of sports) were frequently observed after regeneration. This phenomenon offers prospects for the enlargement of the commercial assortment but can also be used for the study of gene regulation processes in flower colour variegation.  相似文献   

13.
陆玉建  张韩杰  韩文瑜  沈志强 《广西植物》2016,36(12):1439-1444
紫茉莉(Mirabilis jalapa)观赏价值较高,是一种重要的污染修复植物.组织培养技术为植物品种改良和选育的重要途径,但紫茉莉离体快繁方面的研究尚未见有相关报道.该研究以紫茉莉叶片和茎段为外植体,通过观察和统计外植体愈伤组织和不定芽的诱导情况,分析不同植物生长物质对紫茉莉植株再生的影响.结果表明:紫茉莉带芽茎段比较适合丛生芽的诱导,当带芽茎段在MS+1.0 mg·L-16-BA+1.5 mg·L-1 KT+1.0 mg·L-1 NAA+0.05 mg·L-1 TDZ培养基中培养时,不定芽的增殖系数较高.无论是MS或1/2MS培养基,都可诱导不定根的产生,其中生根效果较好的培养基为1/2 MS+0.5 mg·L-1 NAA.该研究结果探索了紫茉莉组织培养的最适条件,根据愈伤组织诱导率和不定芽的增殖系数筛选出了适宜不定芽诱导的培养基类型,根据不定芽生根情况确定了最佳的生根诱导培养基,为建立紫茉莉高效稳定的再生和遗传转化体系奠定了基础.  相似文献   

14.
Adventitious shoot regeneration was obtained from callus produced from main vegetative apices of pear of in vitrogrown shoots of Italian cultivars Spadona and Precoce di Fiorano and wild pear genotypes ISF54 and ISF61. The highest morphogenetic response was obtained on a medium containing 8.8 M 6-benzyladenine, 1.0 M -naphthaleneacetic acid and 250 mg l–1cefotaxime. The explants were maintained for 30 days in darkness and then transferred to an auxin-free medium and to the light. Histological studies revealed that the new vegetative buds originated from callus that completely altered the morphology of the explant tissues by the 30th day of culture. The in situ localisation of cytokinins, performed using antibodies with marked specificity against zeatin (Z) and isopentenyladenine, revealed an accumulation of Z in the cambiform cells of the leaf primordia and in the shell zone of the new forming buds showing a primary role of this cytokinin in cell differentiation of in vitro pear organogenesis.  相似文献   

15.
A high level of adventitious shoot regeneration was obtained from proliferating shoots in vitro for a range of Prunus spp. There was a significant variability in clone response to a range of adventitious shoot regeneration treatments. Treatment of apricot clone H.152 with Quoirin macroelements (C.R. Rech., Stu. Cult. Fruit. Maraîchères Gemblaux (1977) 93–117), and both apricot clone H.146 and hybrid plum clone P.1869 with half-strength Murashige and Skoog medium, consistently induced regeneration. Thidiazuron (TDZ) alone, or in combination with naptthaleneacetic acid (NAA), was most effective in stimulating adventitious shoot production, the optimum concentration being clone-dependent. Addition of silver nitrate (AgNO3) to regeneration media enhanced regeneration by 10–40% and reduced the variability between experiments. Regeneration with AgNO3 was obtained also for three other plum clones belonging to the P. marianna, P. domestica and P. insititia species.  相似文献   

16.
Summary The effect of different cytokinins on in vitro adventitious shoot regeneration from internodal explants of Menthaxgracilis Sole (scoth spearmint) was investigated. Murashige and Skoog (MS) medium containing 100 mg l−1 myo-inositol, 0.4 mg l−1 thiamine-HCl, 2.0% (w/v) sucrose, 10% (v/v) coconut water and supplemented with 4.5 μM thidiazuron (TDZ) was effective in inducing adventitious shoot formation from callus. The greatest percentage of explants with shoots (85%) with the highest mean number of shoots per explant (29) was obtained with explants from the 1st and the 2nd internodes from 2-wk-old stock plants growing on a medium containing MS basal salts, 2% sucrose, 100 mg l−1 myo-inositol, 0.4 mg l−1 thiamine-HCl, at TDZ 4.5 μM and 10% (v/v) coconut water and solidified with 0.2% (w/v) phytagel. The regenerated shoots rooted on a medium containing MS basal salts, 100 mg l−1 myo-inositol, 0.4 mg l−1 thiamine-HCl, 2.0% sucrose, and 0.054 μM naphthalene acetic acid (NAA). Micropropagated plantlets were transplanted into soil and acclimated to greenhouse conditions. This is the first report describing adventitious shoot regeneration of scotch spearmint.  相似文献   

17.
Murashige and Skoog (1962) medium supplemented with 1.0 to 4.5 M of BA and 1.0 M of NAA induced adventitious bud formation and shoot development in leaf explants of Roman Chamomile. A higher number of adventitious buds was observed at the proximal end of the explants. Plantlets were replicated and multiplied on MS medium supplemented with 2.25 M of BA and 0.6 M of IAA. Plantlets were rooted on MS medium supplemented with 0.5 M of IBA and successfully weaned in vivo. The plants grew to maturity with high uniformity and no morphological signs of somaclonal variation.  相似文献   

18.
A single-step, high-frequency regeneration pro-tocol has been standardised for Phytophthora-resistant wild pepper, Piper colubrinum (Link) using root, internode, leaf and petiole explants derived from in vitro plantlets. The effect of BA on shoot-bud induction and elongation was assessed by supplementing half-strength MS medium (macronutrients at half the concentration) with different concentrations of BA, i.e. 0.2–10 mg l–1 in induction media and 0, 0.2 and 0.5 mg l–1 in subculture media. The interaction between culture period and BA concentration was studied by culturing the explants for 8, 15 and 30 days before the first subculture. The elongated shoots were rooted directly in soil and hardened in the greenhouse. The developed protocol would be useful in marker-assisted asymmetric hybridisation programmes involving wild-type Piper colubrinum and the cultivated species P. nigrum. Received: 4 August 1997 / Revision received: 30 January 1998 / Accepted: 12 February 1998  相似文献   

19.
In this study we biochemically characterized stylar ribonucleases (RNases) of Japanese pear (Pyrus pyrifolia), which exhibits S-RNase-based gametophytic self-incompatibility. We separated the RNase fractions NS-1, NS-2, and NS-3 from stylar extracts of the cultivar Nijisseiki (S(2)S(4)). The RNase in each fraction was purified to homogeneity through a series of chromatographic steps. Chemical analysis of the proteins revealed that the basic RNases in the NS-2 and NS-3 fractions were the S(4)- and S(2)-RNases, respectively. Five additional S-RNases were purified from other cultivars. An acidic RNase in the NS-1 fraction was also purified from other cultivars, and identified as a non-S-allele-associated RNase (non-S-RNase). The non-S-RNase is composed of 203 amino acids, is non-glycosylated and is a N-terminal-pyroglutamylated enzyme of the RNase T(2) family. The substrate specificities and optimum pH levels of the non-S-RNase and S-RNases were similar. Interestingly, the specific activity of the non-S-RNase was 7.5-221-fold higher than those of the S-RNases when tolura yeast RNA was used as the substrate. The specific activity of the S(2)-RNase was 8.8-28.6-fold lower than those of the other S-RNases. These differences in specific activities among the stylar RNases are discussed.  相似文献   

20.
Although the heritable nature of plant tissue culture responses is now well documented in many species, only a few studies have been conducted to elucidate complete inheritance patterns. Genetic control of in vitro shoot regeneration from leaf explants was investigated inSolanum chacoense using parental, F1 and F2 generations. Broad-sense heritability estimates were high for frequency (percentage) of responsive leaf explants (61–83%) and number of shoots regenerated per responsive explant (53–75%). Consistent with high heritability estimates, a hypothesis involving three genes could be formulated to explain the variability in the response observed in this study. This model implies that homozygous recessive alleles at any two (out of three) loci are required for the highest response, i.e., more than two shoots per explant in more than 40% of the explants. The presence of homozygous recessive alleles at any one of the three loci produces an intermediate response, i.e., fewer than 40% of the explants regenerating fewer than two shoots per explant, and a dominant allele at all the three loci results in non-responsiveness. Additional minor modifier genes, each with a small effect, would also be required to account for the variable intensity of regeneration within groups. Such a relatively simple genetic control of in vitro regenerability suggests that incorporation of this trait should be easy in potato improvement programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号