首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Listeria monocytogenes is a foodborne pathogen known for its tolerance to conditions of osmotic and chill stress. Accumulation of glycine betaine has been found to be important in the organism's tolerance to both of these stresses. A procedure was developed for the purification of membranes from L. monocytogenes cells in which the putative ATP-driven glycine betaine permease glycine betaine porter II (Gbu) is functional. As is the case for the L. monocytogenes sodium-driven glycine betaine uptake system (glycine betaine porter I), uptake in this vesicle system was dependent on energization by ascorbate-phenazine methosulfate. Vesicles lacking the gbu gene product had no uptake activity. Transport by this porter did not require sodium ion and could be driven only weakly by artificial gradients. Uptake rates could be manipulated under conditions not affecting secondary transport but known to affect ATPase activity. The system was shown to be both osmotically activated and cryoactivated. Under conditions of osmotic activation, the system exhibited Arrhenius-type behavior although the uptake rates were profoundly affected by the physical state of the membrane, with breaks in Arrhenius curves at approximately 10 and 18 degrees C. In the absence of osmotic activation, the permease could be activated by decreasing temperature within the range of 15 to 4 degrees C. Kinetic analyses of the permease at 30 degrees C revealed K(m) values for glycine betaine of 1.2 and 2.9 microM with V(max) values of 2,200 and 3,700 pmol/min. mg of protein under conditions of optimal osmotic activation as mediated by KCl and sucrose, respectively.  相似文献   

2.
Transport of the osmoprotectant and cryoprotectant glycine betaine was investigated in membrane vesicles of Listeria monocytogenes. Uptake-driving transmembrane potentials ranging from 111 to 122 mV within the pH range of 5.5 to 7.5 could be generated by the electron donor system ascorbate-phenazine methosulfate but not by the electron donor system ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine. Transport was dependent on both high concentrations of sodium ion and the presence of a hypertonic solute gradient. Arrhenius-type temperature activation was observed. Lineweaver-Burk plots indicated a Km of 4.4 microM for glycine betaine and a Vmax of 700 pmol/min x mg of protein. The Michaelis constant for NaCl depended on the solute used to maintain a constant hyperosmotic pressure, and the Km values were 200 and 75 mM when KCl and sucrose were employed, respectively. Transport was 65% lower in vesicles derived from cells grown under stress provided by KCI rather than NaCl and approximately 94% lower in vesicles derived from cells that were not grown under osmotic stress. This porter appears to be specific for glycine betaine, since neither proline, carnitine, nor choline inhibited uptake effectively. Kinetic studies using ionophores and artificial gradients indicate that glycine betaine is cotransported with sodium ion.  相似文献   

3.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

4.
Listeria monocytogenes is a pathogenic bacterium that can grow at low temperatures and elevated osmolarity. The organism survives these stresses by the intracellular accumulation of osmolytes: low-molecular-weight organic compounds which exert a counterbalancing force. The primary osmolyte in L. monocytogenes is glycine betaine, which is accumulated from the environment via two transport systems: glycine betaine porter I, an Na(+)-glycine betaine symporter; and glycine betaine porter II, an ATP-dependent transporter. The biochemical characteristics of glycine betaine porter I were investigated in a mutant strain (LTG59) lacking the ATP-dependent transporter. At 4% NaCl, glycine betaine uptake in LTG59 was about fivefold lower than in strain DP-L1044, which has both transporters, indicating that the ATP-dependent transporter is the primary means by which glycine betaine enters the cell. In the absence of osmotic stress, cold-activated uptake by both transporters was most rapid between 7 and 12 degrees C, but a larger fraction of the total uptake was via the ATP-dependent transporter than was observed under salt-stressed conditions. Twelve glycine betaine analogs were tested for their ability to inhibit glycine betaine uptake and growth of stressed cultures. Carnitine, dimethylglycine, and gamma-butyrobetaine appear to inhibit the ATP-dependent transporter, while trigonelline and triethylglycine primarily inhibit glycine betaine porter I. Triethylglycine was also able to retard the growth of osmotically stressed L. monocytogenes grown in the presence of glycine betaine.  相似文献   

5.
The food-borne pathogen Listeria monocytogenes proliferates at refrigeration temperatures, rendering refrigeration ineffective in the preservation of Listeria-contaminated foods. The uptake and intracellular accumulation of the potent compatible solutes glycine betaine and carnitine has been shown to be a key mediator of the pathogen's cold-tolerant phenotype. To date, three compatible solute systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and the carnitine transporter OpuC. We investigated the specificity of each transporter towards each compatible solute at 4 degrees C by examining mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state compatible solute accumulation data together with growth rate experiments demonstrated that under cold stress glycine betaine transport is primarily mediated by Gbu and that Gbu-mediated betaine uptake results in significant growth stimulation of chill-stressed cells. BetL and OpuC can serve as minor porters for the uptake of betaine, and their action is capable of providing a small degree of cryotolerance. Under cold stress, carnitine transport occurs primarily through OpuC and results in a high level of cryoprotection. Weak carnitine transport occurs via Gbu and BetL, conferring correspondingly weak cryoprotection. No other transporter in L. monocytogenes 10403S appears to be involved in transport of either compatible solute at 4 degrees C, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown at that temperature.  相似文献   

6.
The food-borne pathogen Listeria monocytogenes is notable for its ability to grow under osmotic stress and at low temperatures. It is known to accumulate the compatible solutes glycine betaine and carnitine from the medium in response to osmotic or chill stress, and this accumulation confers tolerance to these stresses. Two permeases that transport glycine betaine have been identified, both of which are activated by hyperosmotic stress and one of which is activated by low temperature. An osmotically activated transporter for carnitine, OpuC, has also been identified. We have isolated a Tn917-LTV3 insertional mutant that could not be rescued from hyperosmotic stress by exogenous carnitine. The mutant, LTS4a, grew indistinguishably from a control strain (DP-L1044) in the absence of stress or in the absence of carnitine, but DP-L1044 grew substantially faster under osmotic or chill stress in the presence of carnitine. LTS4a was found to be strongly impaired in KCl-activated as well as chill-activated carnitine transport. 13C nuclear magnetic resonance spectroscopy of perchloric acid extracts showed that accumulation of carnitine by LTS4a was negligible under all conditions tested. Direct sequencing of LTS4a genomic DNA with a primer based on Tn917-LTV3 yielded a 487-bp sequence, which allowed us to determine that the opuC operon had been interrupted by the transposon. It can be concluded that opuC encodes a carnitine transporter that can be activated by either hyperosmotic stress or chill and that the transport system plays a significant role in the tolerance of L. monocytogenes to both forms of environmental stress.  相似文献   

7.
The ability of the gram-positive, food-borne pathogen Listeria monocytogenes to tolerate environments of elevated osmolarity and reduced temperature is due in part to the transport and accumulation of the osmolyte glycine betaine. Previously we showed that glycine betaine transport was the result of Na(+)-glycine betaine symport. In this report, we identify a second glycine betaine transporter from L. monocytogenes which is osmotically activated but does not require a high concentration of Na(+) for activity. By using a pool of Tn917-LTV3 mutants, a salt- and chill-sensitive mutant which was also found to be impaired in its ability to transport glycine betaine was isolated. DNA sequence analysis of the region flanking the site of transposon insertion revealed three open reading frames homologous to opuA from Bacillus subtilis and proU from Escherichia coli, both of which encode glycine betaine transport systems that belong to the superfamily of ATP-dependent transporters. The three open reading frames are closely spaced, suggesting that they are arranged in an operon. Moreover, a region upstream from the first reading frame was found to be homologous to the promoter regions of both opuA and proU. One unusual feature not shared with these other two systems is that the start codons for two of the open reading frames in L. monocytogenes appear to be TTG. That glycine betaine uptake is nearly eliminated in the mutant strain when it is assayed in the absence of Na(+) is an indication that only the ATP-dependent transporter and the Na(+)-glycine betaine symporter occur in L. monocytogenes.  相似文献   

8.
Aims: To investigate the effect of glycine betaine (GB) on the survival of Listeria monocytogenes on leaf surfaces under low relative humidity (RH). Methods and Results: The addition of GB (≥25 mmol l?1) improved the survival of L. monocytogenes under low RH on parsley leaves, thus suggesting that GB can improve the tolerance of L. monocytogenes to desiccation. Ten times less GB was needed to improve L. monocytogenes survival under low RH on nonbiological surfaces compared with parsley leaves, suggesting that, on the leaf surface, L. monocytogenes may have to compete for the available GB with autochthonous bacteria and/or the plant itself. Wild type and mutants carrying deletions in the three GB uptake systems, BetL, Gbu and OpuC, behaved similarly with and without added GB on parsley leaves (P > 0·05). In addition, preaccumulation of GB, triggered by osmotic stress prior to inoculation, failed to improve survival under low RH compared with osmotic stress without GB accumulation. Conclusions: Exogenous GB had a protective effect on L. monocytogenes cells from desiccation during survival on parsley leaves. This effect was independent of intracellular GB accumulation by the known uptake systems. Significance and Impact of the Study: Presence of GB could improve the survival of L. monocytogenes to desiccation on leaf surfaces and nonbiological surfaces.  相似文献   

9.
Exposure of Escherichia coli to 0.8 M NaCl caused a rapid and large decrease in colony-forming activity. When such osmotically upshocked cells were exposed to betaine, colony-forming activity was restored. Betaine was able to restore colony-forming activity even when chloramphenicol inhibited protein synthesis. Thus, restoration was not the result of cell turnover. The cells were not killed by exposure to 0.8 M NaCl, because during exposure they accumulated ATP intracellularly. Betaine treatment caused this cellular ATP to decrease to a lower level. This work may provide the foundation for a simple plating procedure to quantitatively detect nonculturable E. coli in ocean beach recreational waters.  相似文献   

10.
The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a Km of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 μM. This porter has a Km for glycine betaine uptake of about 6 μM. The dedicated carnitine porter, OpuC, has a Km for carnitine uptake of 1 to 3 μM and a Vmax of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by γ-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected.  相似文献   

11.
AIMS: To determine the role played by previous growth in the presence of osmolytes on the subsequent survival and sub-lethal injury of L. monocytogenes during long-term chilled storage in a model buffer system. METHODS AND RESULTS: Four Listeria monocytogenes strains were grown separately to stationary phase in Listeria minimal medium (DM) alone or in DM with 4% NaCl alone, or both these media supplemented with 1 mM L-carnitine and/or 1 mM glycine betaine. Cells were resuspended in phosphate buffered saline (pH 5.5) and stored for four weeks at 4 degrees C. Initially, and at weekly intervals, samples were plated on both Tryptic Soy Agar and Tryptic Soy Agar with 4% NaCl to determine total numbers and degree of sub-lethal injury in the populations. The numbers of cells within all strains after growth to stationary phase, except one which increased ( approximately 2 log cfu ml-1, P < 0.05) in the presence of NaCl, were not influenced significantly by previous growth conditions (P > 0.05). During subsequent chilled storage, however, numbers of all strains grown in the presence of NaCl remained constant while those grown in its absence decreased. The rate and magnitude of the decrease in cell numbers was strain dependent. The initial percentage of sub-lethal injury increased significantly in all strains when grown previously in the presence of L-carnitine (P < 0.05). During subsequent chilled storage sub-lethal injury increased for all strains in a manner that was strain dependent, but not related to the previous growth conditions. CONCLUSION: Previous growth in the presence of osmolytes of NaCl, but not osmolytes alone, increases the subsequent survival, but not percentage sub-lethal injury, of L. monocytogenes during subsequent chilled storage in buffer. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that risks associated with L. monocytogenes in chilled food may be influenced by the individual life histories of the cells.  相似文献   

12.
Exposure of Escherichia coli to 0.8 M NaCl caused a rapid and large decrease in colony-forming activity. When such osmotically upshocked cells were exposed to betaine, colony-forming activity was restored. Betaine was able to restore colony-forming activity even when chloramphenicol inhibited protein synthesis. Thus, restoration was not the result of cell turnover. The cells were not killed by exposure to 0.8 M NaCl, because during exposure they accumulated ATP intracellularly. Betaine treatment caused this cellular ATP to decrease to a lower level. This work may provide the foundation for a simple plating procedure to quantitatively detect nonculturable E. coli in ocean beach recreational waters.  相似文献   

13.
AIMS: To establish the relative importance of the osmo- and cryoprotective compounds glycine betaine and carnitine, and their transporters, for listerial growth and survival, in foods and during infection. METHODS AND RESULTS: A set of Listeria monocytogenes mutants with single, double and triple mutations in the genes encoding the principal betaine and carnitine uptake systems (gbu, betL and opuC, respectively) was used to determine the specific contribution of each transporter to listerial growth and survival. Food models were chosen to represent high-risk foods of plant and animal origin i.e. coleslaw and frankfurters, which have previously been linked to major human outbreaks of listeriosis. BALB/c mice were used as an in vivo model of infection. Interestingly, while betaine appeared to confer most protection in foods, the hierarchy of transporter importance differs depending on the food type: Gbu>BetL>OpuC for coleslaw, as opposed to Gbu>OpuC>BetL in frankfurters. By contrast in the animal model, OpuC and thus carnitine, appears to play the dominant role, with the remaining systems contributing little to the infection process. CONCLUSIONS: This study demonstrates that the individual contribution of each system appears dependent on the immediate environment. In foods Gbu appears to play the dominant role, while during infection OpuC is most important. SIGNIFICANCE AND IMPACT OF THE STUDY: It is envisaged that this information may ultimately facilitate the design of effective control measures specifically targeting this pathogen in foods and during infection.  相似文献   

14.
Listeria monocytogenes is a food-borne pathogen that is widely distributed in nature and is found in many kinds of fresh and processed foods. The pervasiveness of this organism is due, in part, to its ability to tolerate environments with elevated osmolarity and reduced temperatures. Previously, we showed that L. monocytogenes adapts to osmotic and chill stress by transporting the osmolyte glycine betaine from the environment and accumulating it intracellularly (R. Ko, L. T. Smith, and G. M. Smith, J. Bacteriol. 176:426-431, 1994). In the present study, the influence of various environmental conditions on the accumulation of glycine betaine and another osmolyte, carnitine, was investigated. Carnitine was shown to confer both chill and osmotic tolerance to the pathogen but was less effective than glycine betaine. The absolute amount of each osmolyte accumulated by the cell was dependent on the temperature, the osmolarity of the medium, and the phase of growth of the culture. L. monocytogenes also accumulated high levels of osmolytes when grown on a variety of processed meats at reduced temperatures. However, the contribution of carnitine to the total intracellular osmolyte concentration was much greater in samples grown on meat than in those grown in liquid media. While the amount of each osmolyte in meat was less than 1 nmol/mg (fresh weight), the overall levels of osmolytes in L. monocytogenes grown on meat were about the same as those in liquid samples, from about 200 to 1,000 nmol/mg of cell protein for each osmolyte. This finding suggests that the accumulation of osmolytes is as important in the survival of L. monocytogenes in meat as it is in liquid media.  相似文献   

15.
A deletion mutant of Listeria monocytogenes lacking OpuC, an ABC transporter responsible for the uptake of the compatible solute carnitine, was constructed and carnitine transport assays confirmed that carnitine transport was defective in this mutant. However, the mutant retained the ability to derive osmoprotection from carnitine, suggesting the presence of a second uptake system for this compatible solute. Measurement of intracellular carnitine pools during balanced growth confirmed that the opuC mutant accumulated high levels of carnitine. These pools were only achieved in the mutant when high levels (1 mM) of carnitine were present extracellularly. When a lower level (100 microM) was supplied in the medium the mutant failed to accumulate a substantial intracellular pool and failed to derive osmoprotection from carnitine. These data suggest the presence of a second low affinity carnitine uptake system in this osmotolerant pathogen.  相似文献   

16.
R Ko  L T Smith    G M Smith 《Journal of bacteriology》1994,176(2):426-431
Listeria monocytogenes is a gram-positive food-borne pathogen that is notably resistant to osmotic stress and can grow at refrigerator temperatures. These two characteristics make it an insidious threat to public health. Like several other organisms, L. monocytogenes accumulates glycine betaine, a ubiquitous and effective osmolyte, intracellularly when grown under osmotic stress. However, it also accumulates glycine betaine when grown under chill stress at refrigerator temperatures. Exogenously added glycine betaine enhances the growth rate of stressed but not unstressed cells, i.e., it confers both osmotolerance and cryotolerance. Both salt-stimulated and cold-stimulated accumulation of glycine betaine occur by transport from the medium rather than by biosynthesis. Direct measurement of glycine betaine uptake shows that cells transport betaine 200-fold faster at high salt concentration (4% NaCl) than without added salt and 15-fold faster at 7 than at 30 degrees C. The kinetics of glycine betaine transport suggest that the two transport systems are indistinguishable in terms of affinity for betaine and may be the same. Hyperosmotic shock and cold shock experiments suggest the transport system(s) to be constitutive; activation was not blocked by chloramphenicol. A cold-activated transport system is a novel observation and has intriguing implications concerning the physical state of the cell membrane at low temperature.  相似文献   

17.
Recent reports, indicating that under some conditions the intensity of light scattering from cells is a nonlinear function of cell volume, have led to the widespread generalization that intensity of low-angle light scattering indicates cell size. This study was performed to measure the relationships between light scattering and cell volumes in an-isotonic solutions and after a freeze-thaw stress. Cell volumes in isolated human lymphocytes, human granulocytes, and hamster fibroblasts were deliberately altered by exposure to anisotonic solutions. Boyle-vant Hoff plots of cell volume as a function of inverse osmotic pressure showed that the cells behaved as osmometers. Similar plots of right-angle and low-angle light scattering showed that the intensity of light scattering varied inversely with cell volume. In other experiments where cells were frozen without cryoprotectant at various sub zero temperatures to -25 degrees C and then thawed rapidly, cell viability decreased progressively with decreasing temperature, as did the intensity of both low-angle and right-angle light scattering, although cell volumes remained relatively constant. The intensity of both low- and high-angle light scattering varied inversely with cell volumes in hypertonic and hypotonic solutions, but cell damage induced by freezing and thawing resulted in significant reductions in the intensity of low-angle light scattering with little change in cell volume. These observations show that light scattering and cell volumes can vary independently, and they underline the need for a better understanding of the phenomenon of light scattering from living cells.  相似文献   

18.
19.
AIMS: To investigate interactions, if any, between temperature, ferric ammonium citrate and glycine betaine on the growth of Listeria monocytogenes in modified Pine's medium (Pine et al. 1989). METHODS AND RESULTS: Modified Pine's medium containing 0, 0.044, 0.088 or 0.176 g l(-1) ferric ammonium citrate, and 0 or 1 mM glycine betaine, was inoculated with each of two L. monocytogenes strains and incubated at 4, 25 or 37 degrees C. The optical density at 600 nm, and cell numbers, were determined at appropriate time intervals. At 4 degrees C, but not other temperatures, increasing ferric ammonium citrate resulted in improved growth in the absence, but not the presence, of glycine betaine. The presence of glycine betaine was inhibitory at 25 and 37 degrees C, but not at 4 degrees C. CONCLUSIONS: Interactions affecting the growth kinetics of L. monocytogenes were apparent between the parameters investigated. SIGNIFICANCE AND IMPACT OF THE STUDY: Limitations on the use of modified Pine's medium, and the significance of iron metabolism at lower temperatures, were revealed.  相似文献   

20.
The trimethylammonium compound glycine betaine (N,N, N-trimethylglycine) can be accumulated to high intracellular concentrations, conferring enhanced osmo- and cryotolerance upon Listeria monocytogenes. We report the identification of betL, a gene encoding a glycine betaine uptake system in L. monocytogenes, isolated by functional complementation of the betaine uptake mutant Escherichia coli MKH13. The betL gene is preceded by a consensus sigmaB-dependent promoter and is predicted to encode a 55-kDa protein (507 amino acid residues) with 12 transmembrane regions. BetL exhibits significant sequence homologies to other glycine betaine transporters, including OpuD from Bacillus subtilis (57% identity) and BetP from Corynebacterium glutamicum (41% identity). These high-affinity secondary transporters form a subset of the trimethylammonium transporter family specific for glycine betaine, whose substrates possess a fully methylated quaternary ammonium group. The observed Km value of 7.9 microM for glycine betaine uptake after heterologous expression of betL in E. coli MKH13 is consistent with values obtained for L. monocytogenes in other studies. In addition, a betL knockout mutant which is significantly affected in its ability to accumulate glycine betaine in the presence or absence of NaCl has been constructed in L. monocytogenes. This mutant is also unable to withstand concentrations of salt as high as can the BetL+ parent, signifying the role of the transporter in Listeria osmotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号