首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A type II restriction endonuclease (SuaI) has been isolated from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. The enzyme is an isoschizomer of BspRI. It does not cut S. acidocaldarius DNA, as the recognition sequence GGCC in this DNA contains modified nucleotide(s). The enzyme is most active at 60-70 degrees C and is highly thermostable.  相似文献   

2.
A DNA polymerase purified from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius was used to perform automated DNA amplification at 70 degrees C as well as site directed mutagenesis by Polymerase Chain Reaction (P.C.R.). The yield of amplification performed at optimum MgCl2 concentration for the Taq or the S. acidocaldarius DNA polymerase, for the same DNA target, was equivalent. The ability of S. acidocaldarius DNA polymerase to perform P.C.R. under less stringent requirement of MgCl2 concentration gives this enzyme a non-negligible advantage over the Taq DNA polymerase.  相似文献   

3.
5-methylcytosine in chromosomal DNA represents a potential source of frequent spontaneous mutation for hyperthermophiles. To determine the relevance of this threat for the archaeon Sulfolobus acidocaldarius, the mode of GGCC methylation by its restriction-modification system, SuaI, was investigated. Distinct isoschizomers of the SuaI endonuclease were used to probe the methylation state of GGCC in native S. acidocaldarius DNA. In addition, the methylation sensitivity of the SuaI endonuclease was determined with synthetic oligonucleotide substrates and modified natural DNAs. The results show that the SuaI system uses N(4) methylation to block cleavage of its recognition site, thereby avoiding the creation of G. T mismatches by spontaneous deamination at extremely high temperature.  相似文献   

4.
The first archaeal aconitase was isolated from the cytosol of the thermoacidophilic Sulfolobus acidocaldarius. Interestingly, the enzyme was copurified with an isocitrate lyase. This enzyme, directly converting isocitrate, the reaction product of the aconitase reaction, was also unknown in crenarchaeota, thus far. Both proteins could only be separated by SDS gel electrophoresis yielding apparent molecular masses of 96 kDa for the aconitase and 46 kDa for the isocitrate lyase. Despite of its high oxygen sensitivity, the aconitase could be enriched 27-fold to a specific activity of approximately 55 micromol x min(-1) x mg(-1), based on the direct aconitase assay system. Maximal enzyme activities were measured at pH 7.4 and the temperature optimum for the archaeal enzyme was recorded at 75 degrees C, slightly under the growth optimum of S. acidocaldarius around 80 degrees C. Thermal inactivation studies of the aconitase revealed the enzymatic activity to be uninfluenced after one hour incubation at 80 degrees C. Even at 95 degrees C, a half-life of approximately 14 min was determined, clearly defining it as a thermostable protein. The apparent K(m) values for the three substrates cis-aconitate, citrate and isocitrate were found as 108 microM, 2.9 mM and 370 microM, respectively. The aconitase reaction was inhibited by the typical inhibitors fluorocitrate, trans-aconitate and tricarballylate. Amino-acid sequencing of three internal peptides of the S. acidocaldarius aconitase revealed the presence of highly conserved residues in the archaeal enzyme. By amino-acid sequence alignments, the S. acidocaldarius sequence was found to be highly homologous to either other putative archaeal or known eukaryal and bacterial sequences. As shown by EPR-spectroscopy, the enzyme hosts an interconvertible [3Fe--4S] cluster.  相似文献   

5.
The archaebacteria constitute a group of prokaryotes with an intermediate phylogenetic position between eukaryotes and eubacteria. The study of their DNA polymerases may provide valuable information about putative evolutionary relationships between prokaryotic and eukaryotic DNA polymerases. As a first step towards this goal, we have purified to near homogeneity a DNA polymerase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. This enzyme is a monomeric protein of 100 kDa which can catalyze DNA synthesis using either activated calf thymus DNA or oligonucleotide-primed single-stranded DNA as a template. The activity is optimal at 70 degrees C and the enzyme is thermostable up to 80 degrees C; however, it can still polymerize up to 200 nucleotides at 100 degrees C. These remarkable thermophilic properties and thermostability permit examination of the mechanism of DNA synthesis under conditions of decreased stability of the DNA helix. Furthermore, these properties make S. acidocaldarius DNA polymerase a very efficient enzyme to be used in DNA amplification by the recently developed polymerase chain reaction method (PCR) as well as in the Sanger DNA sequencing technique.  相似文献   

6.
The activity of a homogeneous DNA polymerase from the thermophilic archaebacterium, Sulfolobus acidocaldarius, on a singly primed, single-stranded recombinant phage M13 DNA has been examined. At the optimal temperature (70 to 75 degrees C) this template is efficiently replicated in ten minutes using a ratio of enzyme molecule to primed-template of 0.8. Analysis of DNA products during the course of polymerization shows that species of quite homogeneous size are observed and that the number of primers extended by the enzyme is constant, whatever the enzyme molecule to primed template ratio is in the range 1/50 to 2, indicating that the 100 x 10(3) Mr DNA polymerase from S. acidocaldarius is randomly recycled on the template molecules. At non-optimal temperature (60 degrees C and 80 degrees C) the distribution of products observed indicated the presence of arrest sequences; some have been shown to be reversible. One of these pausing signals detected at 80 degrees C has been further analysed, and has been found to be DNA sequence-dependent.  相似文献   

7.
8.
A topoisomerase, able to relax negatively supercoiled DNA, has been isolated from the archaebacterium Sulfolobus acidocaldarius. Relaxation was fully efficient in vitro between 70 degrees C and 80 degrees C and was dependent on the presence of ATP and magnesium ions. The enzyme did not exhibit gyrase-like activity and was poorly sensitive to gyrase inhibitors. These properties are reminiscent of eukaryotic type II topoisomerases. However, the enzyme was unable to relax positively supercoiled DNA. This thermophilic enzyme may be used in a variety of ways to study the structure and stability of DNA at high temperature.  相似文献   

9.
The DNA ligase gene from thermophilic archaea of the genus Thermococcus (strain 1519) was identified and sequenced in the polymerase chain reaction. The recombinant enzyme LigTh1519 was expressed in Escherichia coli, purified, and characterized. LigTh1519 was capable of ligating the cohesive ends and single-strand breaks in double-stranded DNA (ATP as a cofactor). The optimum conditions for the ligase reaction appeared as follows: 100 mM NaCl, 50 mM MgCl2, pH 7.0-10.5, and temperature 70 degrees C. More than 50% Lig1519 activity were preserved after incubation of the enzyme at 80 degrees C for 30 min. New thermostable DNA ligase LihTh1519 may be used for basic and applied researches in molecular biology and genetic engineering.  相似文献   

10.
Thermostable peroxidase from Bacillus stearothermophilus   总被引:8,自引:0,他引:8  
A peroxidase from Bacillus stearothermophilus was purified to homogeneity. The enzyme (Mr 175,000) was composed of two subunits of equal size, and showed a Soret band at 406 nm. On reduction with sodium dithionite, absorption at 434 nm and 558 nm was observed. The spectrum of reduced pyridine haemochrome showed peaks at 418, 526 and 557 nm; the reduced minus oxidized spectrum of pyridine haemochrome showed peaks of 418, 524 and 556 nm with a trough at 452 nm. These results indicate that the enzyme contained protohaem IX as a prosthetic group. The optimum pH was about 6 and the apparent optimum temperature was 70 degrees C. The enzyme was relatively stable up to 70 degrees C; at 30 degrees C it was stable for a month. The enzyme had peroxidase activity toward a mixture of 2,4-dichlorophenol and 4-aminoantipyrine with a Km for H2O2 of 1.3 mM. It also acted as a catalase with a Km for H2O2 of 7.5 mM.  相似文献   

11.
We have purified to near homogeneity a DNA polymerase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Sodium dodecyl sulfate gel electrophoresis of the purified enzyme revealed a polypeptide of 100 kDa. On the basis of a Stokes radius of 4.2 nm and a sedimentation coefficient of 6 S, the purified enzyme has an estimated molecular mass of 109 kDa. These results are consistent with the enzyme being a monomer of 100 kDa. In addition a polyclonal antiserum, obtained by injection of the electroeluted 100-kDa polypeptide into a rabbit, specifically neutralized the DNA-polymerase activity. The enzyme is sensitive to both N-ethylmaleimide and 2',3'-dideoxyribosylthymine triphosphate and resistant to aphidicolin. The purified DNA polymerase has neither exonuclease nor primase activities. In our in vitro conditions, the enzyme is thermostable up to 80 degrees C and is active between 55 degrees C and 85 degrees C in the presence of activated calf-thymus DNA.  相似文献   

12.
An RNA-directed DNA polymerase was purified from a cell line derived from a radiation-induced lymphoma in NIH Swiss mice which produced non-infectious type C virus particles. The enzyme was isolated from a high speed particulate fraction which bands at a density of 1.16--1.19 g/ml in a sucrose gradient, and purified by successive chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 7.5, a KCl optimum of 50 mM, and a Mn2+ optimum of 0.25 mM. It prefers (dT)15 . (A)n to (dT)15 . (dA)n as the primer template and transcribes the poly(C) strand of (dG)15 .(C)n and (dG)15 . (OMeC)n. It transcribes heteropolymeric regions of avian myeloblastosis virus 70 S RNA, and is inhibited by antiserum to Rauscher murine leukemia virus DNA polymerase. Comparison of the properties of DNA polymerase purified from radiation-induced lymphoma cells with the DNA polymerase purified from non-defective murine type C RNA tumor viruses shows that the mouse lymphoma enzyme is both biochemically and immunologically related to murine leukemia virus DNA polymerases.  相似文献   

13.
Site-specific endonuclease NspLKI has been isolated and purified to functionally pure state from soil bacterium Nocardia species LK by successive chromatography on columns with phosphocellulose, HTP hydroxyapatite, and heparin-Sepharose. The isolated enzyme recognizes the 5'-GG downward arrowCC-3' sequence on DNA and cleaves it as indicated by the arrow, i.e., it is an isoschizomer of HaeIII. The final enzyme yield is 1.105 units per gram of wet biomass. The enzyme is active in the temperature range of 25-60 degrees C with an optimum at 48-55 degrees C; it does not lose activity on storage for three days at room temperature. An optimal buffer is HRB containing 10 mM Tris-HCl, pH 7.4, 200 microgram/ml albumin, 10 mM MgCl2, and 100 mM NaCl.  相似文献   

14.
An RNA-directed DNA polymerase was purified from baboon endogenous type-C virus by successive column chromatography on DEAE cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 8.0, a Mn2+ optimum of 1 mM, and a KCl optimum of 40 mM. The purified enzyme transcribes heteropolymeric regions of viral 60--70 S RNA isolated from different type-C viruses. The purified enzyme is immunologically related to a similarly purified polymerase from the cat endogenous type-C virus RD114.  相似文献   

15.
A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.  相似文献   

16.
DNA polymerase has been purified about 25,000-fold from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. On SDS-PAGE the enzyme was observed to have a molecular weight of 100 kDa and to be about 90% pure. The native molecular weight was 108 kDa indicating that the enzyme is composed of a single polypeptide. Activity gel analysis showed an active polypeptide of about 100 kDa. Under conditions promoting proteolysis this polypeptide was degraded to a slightly smaller form of 98 kDa. The enzyme has been characterized in respect to optimal assay conditions, template specificity, sensitivity to inhibitors and associated nuclease activities. The high temperature optimum of 65 degrees C should be emphasized. No substantial similarities have been found with other prokaryotic and eukaryotic DNA polymerases, although the enzyme bears certain resemblances to prokaryotic non-replicative polymerases.  相似文献   

17.
Cell-free extracts of Thiobacillus acidophilus catalysed the quantitative conversion of trithionate (S3O6(2-) to thiosulphate and sulphate. A continuous assay for quantification of experimental results was based on the difference in absorbance between trithionate and thiosulphate at 220 nm. Trithionate hydrolase was purified to near homogeneity from cell-free extracts of T. acidophilus. The molecular masses of the native enzyme and the subunit were 99 kDa (gel filtration) and 34 kDa (SDS/PAGE). The purified enzyme has a pH optimum of 3.5-4.5 and a temperature optimum of 70 degrees C. Enzyme activity was stimulated by sulphate. The stimulation of the enzyme activity by sulphate was half maximal at a concentration of 0.23 M. The Km for trithionate is 70 microM at 30 degrees C and 270 microM at 70 degrees C. Enzyme activity was lost after 36 days at 0 degrees C, 27 days at 70 degrees C; but after 97 days at 30 degrees C, 40% of the initial activity was still present: The enzyme activity was inhibited by mercury chloride, N-ethylmaleimide, thiosulphate and tetrathionate. Tetrathionate S4O6(2-) was not hydrolysed by trithionate hydrolase.  相似文献   

18.
2-Oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately autotrophic, hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, was purified to homogeneity by precipitation with ammonium sulfate and by fractionation by DEAE-Sepharose CL-6B, polyacrylate-quaternary amine, hydroxyapatite, and Superdex-200 chromatography. The purified enzyme had a molecular mass of about 105 kDa and comprised two subunits (70 kDa and 35 kDa). The activity of the 2-oxoglutarate:ferredoxin oxidoreductase was detected by the use of 2-oxoglutarate, coenzyme A, and one of several electron acceptors in substrate amounts (ferredoxin isolated from H. thermophilus, flavin adenine dinucleotide, flavin mononucleotide, or methyl viologen). NAD, NADP, and ferredoxins from Chlorella spp. and Clostridium pasteurianum were ineffective. The enzyme was extremely thermostable; the temperature optimum for 2-oxoglutarate oxidation was above 80 degrees C, and the time for a 50% loss of activity at 70 degrees C under anaerobic conditions was 22 h. The optimum pH for a 2-oxoglutarate oxidation reaction was 7.6 to 7.8. The apparent Km values for 2-oxoglutarate and coenzyme A at 70 degrees C were 1.42 mM and 80 microM, respectively.  相似文献   

19.
D-Lactate dehydrogenase from the extreme halophilic archaebacterium Halobacterium marismortui has been partially purified by ammonium-sulfate fractionation, hydrophobic and ion exchange chromatography. Catalytic activity of the enzyme requires salt concentrations beyond 1M NaCl: optimum conditions are 4M NaCl or KCl, pH 6-8, 50 degrees C. Michaelis constants for NADH and pyruvate under optimum conditions of enzymatic activity are 0.070 and 4.5mM, respectively. As for other bacterial D-specific lactate dehydrogenases, fructose 1,6-bisphosphate and divalent cations (Mg2+, Mn2+) do not affect the catalytic activity of the enzyme. As shown by gel-filtration and ultracentrifugal analysis, the enzyme under the conditions of the enzyme assay is a dimer with a subunit molecular mass close to 36 kDa. At low salt concentrations (less than 1M), as well as high concentrations of chaotropic solvent components and low pH, the enzyme undergoes reversible deactivation, dissociation and denaturation. The temperature dependence of the enzymatic activity shows non-linear Arrhenius behavior with activation energies of the order of 90 and 25 kJ/mol at temperatures below and beyond ca. 30 degrees C. In the presence of high salt, the enzyme exhibits exceptional thermal stability; denaturation only occurs at temperatures beyond 55 degrees C. The half-time of deactivation at 70 and 75 degrees C is 300 and 15 min, respectively. Maximum stability is observed at pH 7.5-9.0.  相似文献   

20.
A novel glucose oxidase (GOX), a flavoenzyme, from Penicillium sp. was isolated, purified and partially characterised. Maximum activities of 1.08U mg(-1)dry weight intracellular and 6.9U ml(-1) extracellular GOX were obtained. Isoelectric focussing revealed two isoenzymes present in both intra- and extracellular fractions, having pI's of 4.30 and 4.67. GOX from Penicillium sp. was shown to be dimeric with a molecular weight of 148kDa, consisting of two equal subunits with molecular weight of 70k Da. The enzyme displayed a temperature optimum between 25 and 30 degrees C, and an optimum pH range of 6-8 for the oxidation of beta-d-glucose. The enzyme was stable at 25 degrees C for a minimum of 10h, with a half-life of approximately 30 min at 37 degrees C without any prior stabilisation. The lyophilized enzyme was stable at -20 degrees C for a minimum of 6 months. GOX from Penicillium sp. Tt42 displayed the following kinetic characteristics: Vmax, 240.5U mg(-1); Km, 18.4mM; kcat, 741 s(-1) and kcat/Km, 40 s(-1)mM(-1). Stability at room temperature, good shelf-life without stabilisation and the neutral range for the pH optimum of this GOX contribute to its usefulness in current GOX-based biosensor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号