首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional groups of the DNA methylation site that are involved in the DNA interaction with methyltransferase SsoII at the recognition stage were identified. The contacts in the enzyme–substrate complex were analyzed in the presence of S-adenosyl-L-homocysteine using the interference footprinting assay with formic acid, hydrazine, dimethyl sulfate, or N-ethyl-N-nitrosourea as a modifying reagent. It was shown that the replacement of the central A · T by the G · C pair in the methylation site did not affect enzyme–DNA interaction, whereas the use of a substrate with one strand methylated (monomethylated substrate) instead of the unmethylated substrate dramatically changes the DNA contacts. The binding constants of unmethylated and monomethylated substrates with methyltransferase SsoII in the presence of S-adenosyl-L-homocysteine were calculated.  相似文献   

2.
DNA duplexes containing a single phosphoryldisulfide link in place of the natural internucleotide phosphodiester bond were employed in affinity modification of Cys142 in cytosine-C5 DNA methyltransferase SsoII (M.SsoII). The possibility of duplex-M.SsoII conjugation as a result of disulfide exchange was demonstrated. The crosslinking efficiency proved to depend on the DNA primary structure, modification position, and the presence of S-adenosyl-L-homocysteine, a nonreactive analog of the methylation cofactor. The SH group of M.SsoII Cys142 was assumed to be close to the DNA sugar-phosphate backbone in the DNA-enzyme complex.  相似文献   

3.
4.
5.
Chemical synthesis of a series of modified oligodeoxyribonucleotides containing one or two residues of thymidine glycol (5,6-dihydro-5,6-dihydroxythymidine), the main product of oxidative DNA damage, is described. The thermal stability of DNA duplexes containing thymidine glycol residues was studied using UV spectroscopy. Introduction of even one thymidine glycol residue into the duplex structure was shown to result in its significant destabilization. Data on the interaction of DNA methyltransferases and type II restriction endonucleases with DNA ligands containing oxidized thymine were obtained for the first time. Introduction of a thymidine glycol residue in the central degenerate position of the recognition site of restriction endonuclease SsoII was found to result in an increase in the initial hydrolysis rate of the modified duplex in comparison with that of unmodified structure. The affinity of C5-cytosine methyltransferase SsoII for the DNA duplex bearing thymidine glycol was found to be twofold higher than for the unmodified substrate. However, such a modification of the DNA ligand prevents its methylation.  相似文献   

6.
The ermC 23 S rRNA methyltransferase converts a single adenine residue to N6,N6-dimethyladenine, both in vivo and in vitro. The ermC methyltransferase was demonstrated to produce both N6-mono and N6,N6-dimethylated adenine residues in Bacillus subtilis 23 S rRNA during the course of the reaction in vitro. An almost total conversion of monomethylated intermediates into dimethylated products was observed upon completion of the reaction. Data presented here demonstrate that the addition of the two methyl groups to each 23 S rRNA molecule takes place through a monomethylated intermediate and suggest that the enzyme dissociates from its RNA substrate between the two consecutive methylation reactions. The enzyme is able to utilize monomethylated RNA as substrate for the addition of a second methyl group with an efficiency approximately comparable to that obtained when unmethylated RNA was the initial substrate. Initial-rate data and inhibition studies suggest that the ermC methylase reaction involves a sequential mechanism occurring by two consecutive Random Bi Bi reactions.  相似文献   

7.
Chemical synthesis of a series of modified oligodeoxyribonucleotides containing one or two residues of thymidine glycol (5,6-dihydro-5,6-dihydroxythymidine), the main product of oxidative DNA damage, is described. The thermal stability of DNA duplexes containing thymidine glycol residues was studied using UV spectroscopy. Introduction of even one thymidine glycol residue into the duplex structure was shown to result in its significant destabilization. Data on the interaction of DNA methyltransferases and type II restriction endonucleases with DNA ligands containing oxidized thymine were obtained for the first time. Introduction of a thymidine glycol residue into the central degenerate position of the recognition site of restriction endonuclease SsoII was found to result in an increase in the initial hydrolysis rate of the modified duplex in comparison with that of the unmodified structure. The affinity of C5-cytosine methyltransferase SsoII for the DNA duplex bearing thymidine glycol was found to be twofold higher than for the unmodified substrate. However, such a modification of the DNA ligand prevents its methylation. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.  相似文献   

8.
DNA duplexes bearing an aldehyde group at the 2'-position of the sugar moiety were used for affinity modification of (cytosine-5)-DNA methyltransferase SsoII. It is shown that lysine residues of M.SsoII N-terminal region are located in proximity to DNA sugar-phosphate backbone of a regulatory sequence of promoter region of SsoII restriction-modification enzyme coding genes. The ability of the two M.SsoII subunits to interact with DNA regulatory sequence has been demonstrated by affinity modification using DNA duplexes with two 2'-aldehyde groups. Changes in nucleotide sequence of one half of the regulatory region prevented cross-linking of the second M.SsoII subunit. The results on sequential affinity modification of M.SsoII by two types of modified DNA ligands (i.e. by 2'-aldehyde-containing and phosphoryldisulfide-containing) have demonstrated the possibility of covalent attachment of the protein to two different DNA recognition sites: regulatory sequence and methylation site.  相似文献   

9.
10.
To mediate adaptation to stimuli, the methyltransferase (CheR) catalyzes methyl group transfer from S-adenosyl-L-methionine (SAM) to glutamyl residues in the transmembrane receptors of the bacterial chemosensory signaling pathway. The interaction between receptors and CheR occurs at two sites: a methylation site-active site interaction, and a 'docking' site interaction that is separated both from the methylation sites and the CheR active site. It is not certain if the docking site interaction functions merely to localize the transferase in close proximity to the methylation sites, or if it also increases CheR catalytic activity. Isothermal titration calorimetry experiments are conducted to test for allosteric interactions between the docking and active sites on CheR, which are expected to be present if docking activates CheR. The binding parameters (DeltaG, DeltaH, DeltaS) of a substrate analog of SAM, S-adenosyl-L-homocysteine (SAH), are measured both in the absence and presence of saturating concentrations of a pentapeptide (NWETF) that defines the docking receptor docking segment. SAH binding is unaffected by the presence of saturating NWETF, providing evidence that an allosteric activation of CheR does not take place upon docking, and thus supports the idea that the CheR-NWETF interaction merely functions to localize CheR near the sites of methylation.  相似文献   

11.
A DNA methyltransferase of Mr = 140,000 that is active on both unmethylated and hemimethylated DNA substrates has been purified from the murine plasma-cytoma cell line MPC 11. The maximal rate of methylation was obtained with maintenance methylation of hemimethylated Micrococcus luteus or M13 DNAs. At low enzyme concentrations, the highest rate of de novo methylation occurred with single-stranded DNA or relatively short duplex DNA containing single-stranded regions. Strong substrate inhibition was observed with hemimethylated but not unmethylated DNA substrates. Fully methylated single-stranded M13 phage DNA inhibited neither the de novo nor the maintenance reactions, but unmethylated single-stranded M13 DNA strongly inhibited the maintenance reaction. The kinetics observed with hemimethylated and single-stranded substrates could be explained if the enzyme were to bind irreversibly to a DNA molecule and to aggregate if present in molar excess. Such aggregates would be required for activity upon hemimethylated but not single-stranded DNA. For de novo methylation of duplex DNA, single-stranded regions or large amounts of methyltransferase appear to be required. The relative substrate preference for the enzyme is hemimethylated DNA greater than fully or partially single-stranded DNA greater than fully duplex DNA.  相似文献   

12.
Horton JR  Liebert K  Hattman S  Jeltsch A  Cheng X 《Cell》2005,121(3):349-361
DNA methyltransferases methylate target bases within specific nucleotide sequences. Three structures are described for bacteriophage T4 DNA-adenine methyltransferase (T4Dam) in ternary complexes with partially and fully specific DNA and a methyl-donor analog. We also report the effects of substitutions in the related Escherichia coli DNA methyltransferase (EcoDam), altering residues corresponding to those involved in specific interaction with the canonical GATC target sequence in T4Dam. We have identified two types of protein-DNA interactions: discriminatory contacts, which stabilize the transition state and accelerate methylation of the cognate site, and antidiscriminatory contacts, which do not significantly affect methylation of the cognate site but disfavor activity at noncognate sites. These structures illustrate the transition in enzyme-DNA interaction from nonspecific to specific interaction, suggesting that there is a temporal order for formation of specific contacts.  相似文献   

13.
Bacterial ribosomal protein L11 is post-translationally trimethylated at multiple residues by a single methyltransferase, PrmA. Here, we describe four structures of PrmA from the extreme thermophile Thermus thermophilus. Two apo-PrmA structures at 1.59 and 2.3 A resolution and a third with bound cofactor S-adenosyl-L-methionine at 1.75 A each exhibit distinct relative positions of the substrate recognition and catalytic domains, revealing how PrmA can position the L11 substrate for multiple, consecutive side-chain methylation reactions. The fourth structure, the PrmA-L11 enzyme-substrate complex at 2.4 A resolution, illustrates the highly specific interaction of the N-terminal domain with its substrate and places Lys39 in the PrmA active site. The presence of a unique flexible loop in the cofactor-binding site suggests how exchange of AdoMet with the reaction product S-adenosyl-L-homocysteine can occur without necessitating the dissociation of PrmA from L11. Finally, the mode of interaction of PrmA with L11 explains its observed preference for L11 as substrate before its assembly into the 50S ribosomal subunit.  相似文献   

14.
The interaction of DNA-methyltransferase Ecl18kI (M.Ecl18kI) with a fragment of promoter region of restriction-modification system SsoII was studied. It is shown that dissociation constants of M.Ecl18kI and M.SsoII complexes with DNA ligand carrying a regulatory site previously characterized for M.SsoII have comparable values. A deletion derivative of M.Ecl18kI, Δ(72–379)Ecl18kI, representing the N-terminal protein region responsible for regulation, was obtained. It is shown that such polypeptide fragment has virtually no interaction with the regulatory site. Therefore, the existence of a region responsible for methylation is necessary for maintaining M.Ecl18kI regulatory function. The properties of methyl-transferase NlaX, which is actually a natural deletion derivative of M.Ecl18kI and M.SsoII lacking the first 70 amino acid residues and not being able to regulate gene expression of the SsoII restriction-modification system, were studied. The ability of mutant forms of M.Ecl18kI incorporating single substitutions in regions responsible for regulation and methylation to interact with both sites of DNA recognition was characterized. The data show a correlation between DNA-binding activity of two M.Ecl18kI regions-regulatory and methylating.  相似文献   

15.
T H Bestor 《The EMBO journal》1992,11(7):2611-2617
Mammalian DNA (cytosine-5) methyltransferase contains a C-terminal domain that is closely related to bacterial cytosine-5 restriction methyltransferase. This methyltransferase domain is linked to a large N-terminal domain. It is shown here that the N-terminal domain contains a Zn binding site and that the N- and C-terminal domains can be separated by cleavage with trypsin or Staphylococcus aureus protease V8; the protease V8 cleavage site was determined by Edman degradation to lie 10 residues C-terminal of the run of alternating lysyl and glycyl residues which joins the two domains and six residues N-terminal of the first sequence motif conserved between the mammalian and bacterial cytosine methyltransferases. While the intact enzyme had little activity on unmethylated DNA substrates, cleavage between the domains caused a large stimulation of the initial velocity of methylation of unmethylated DNA without substantial change in the rate of methylation of hemimethylated DNA. These findings indicate that the N-terminal domain of DNA methyltransferase ensures the clonal propagation of methylation patterns through inhibition of the de novo activity of the C-terminal domain. Mammalian DNA methyltransferase is likely to have arisen via fusion of a prokaryotic-like restriction methyltransferase and an unrelated DNA binding protein. Stimulation of the de novo activity of DNA methyltransferase by proteolytic cleavage in vivo may contribute to the process of ectopic methylation observed in the DNA of aging animals, tumors and in lines of cultured cells.  相似文献   

16.
Over 20% of the cytosine bases in frog virus 3 DNA are methylated at the 5-carbon position. To determine whether this high degree of methylation is the result of a virus-specific enzyme, we examined the kinetics of induction and the substrate specificity of a DNA methyltransferase from frog virus 3-infected fathead minnow cells. A novel DNA methyltransferase activity appeared in the cytoplasm of infected cells at 3 h postinfection. This activity was induced in the absence of viral DNA replication and was therefore probably an early viral enzyme. In contrast to the methyltransferase activity extracted from uninfected cell nuclei, the cytoplasmic enzyme showed a strong template preference for double-stranded over single-stranded and for unmethylated over hemimethylated DNA. The dinucleotide sequence dCpdG was a necessary and sufficient exogenous substrate for methylation in vitro. A mutant of frog virus 3, isolated as resistant to 5-azacytidine and having unmethylated virion DNA, did not induce cytoplasmic DNA methyltransferase, leading to the conclusion that this activity is coded for by the virus.  相似文献   

17.
DNA methyltransferases are not only sequence specific in their action, but they also differentiate between the alternative methylation states of a target site. Some methyltransferases are equally active on either unmethylated or hemimethylated DNA and consequently function as de novo methyltransferases. Others are specific for hemimethylated target sequences, consistent with the postulated role of a maintenance methyltransferase in perpetuating a pattern of DNA modification. The molecular basis for the difference between de novo and maintenance methyltransferase activity is unknown, yet fundamental to cellular activities that are affected by different methylation states of the genome. The methyltransferase activity of the type I restriction and modification system, EcoK, is the only known prokaryotic methyltransferase shown to be specific for hemimethylated target sequences. We have isolated mutants of Escherichia coli K-12 which are able to modify unmethylated target sequences efficiently in a manner indicative of de novo methyltransferase activity. Consistent with this change in specificity, some mutations shift the balance between DNA restriction and modification as if both activities now compete at unmethylated targets. Two genes encode the methyltransferase and all the mutations are loosely clustered within one of them.  相似文献   

18.
Pradhan S  Estève PO 《Biochemistry》2003,42(18):5321-5332
The human maintenance DNA (cytosine-5) methyltransferase (hDNMT1) consists of a large N-terminal regulatory domain fused to a catalytic C-terminal domain by randomly repeated Gly-Lys dipeptides. Several N-terminal deletion mutants of hDNMT1 were made, purified, and tested for substrate specificity. Deletion mutants lacking 121, 501, 540, or 580 amino acids from the N-terminus still functioned as DNA methyltransferases, methylated CG sequences, and preferred hemimethylated to unmethylated DNA, as did the full-length hDNMT1. Methylated DNA stimulated methylation spreading on unmethylated CpG sequences for the full-length and the 121 amino acid deletion hDNMT1 equally well but not for the mutants lacking 501, 540, or 580 amino acids, indicating the presence of an allosteric activation determinant between amino acids 121 and 501. Peptides from the N- and C-termini bound methylated DNA independently. Point mutation analysis within the allosteric region revealed that amino acids 284-287 (KKHR) were involved in methylated DNA-mediated allosteric activation. Allosteric activation was reduced in the double point mutant enzymes D25 (K284A and K285A) and D12 (H286A and R287A). Retinoblastoma gene product (Rb), a negative regulator of DNA methylation, bound to the allosteric site of hDNMT1 and inhibited methylation, suggesting Rb may regulate methylation spreading.  相似文献   

19.
Hemimethylated DNA substrates prepared from cell cultures treated with 5-azacytidine are efficient acceptors of methyl groups from S-adenosylmethionine in the presence of a crude preparation of mouse spleen DNA methyltransferase. Partially purified methyltransferase was also capable of efficiently modifying single-stranded unmethylated DNA. The methylation of single-stranded DNA was less sensitive to inhibition by salt than duplex DNA. The presence of other DNA species in the reaction mix (duplex or single-stranded, methylated or unmethylated) inhibited the modification of the hemimethylated duplex DNA. The enzyme was specific for DNA, since the presence of RNA in reaction mixtures did not inhibit the methylation of DNA. DNA methyltransferase formed a tight-binding complex with hemimethylated duplex DNA containing high levels of 5-azacytosine, and this complex was not dissociated by high concentrations of salt. Treatment of cultured cells with biologically effective concentrations of 5-azacytidine and other cytidine analogs modified in the 5 position resulted in a loss of extractable active enzyme from the cells. The amount of extractable active enzyme recovered slowly with time after treatment. These results suggest that incorporation of 5-azacytidine into DNA inhibits the progress of DNA methyltransferase along the duplex, perhaps by the formation of a tight-binding complex. This complex formation might be irreversible, so that new enzyme synthesis might be required to reverse the block of DNA methylation.  相似文献   

20.
DNA methylation is an epigenetic modification of DNA. There are currently three catalytically active mammalian DNA methyltransferases, DNMT1, -3a, and -3b. DNMT1 has been shown to have a preference for hemimethylated DNA and has therefore been termed the maintenance methyltransferase. Although previous studies on DNMT3a and -3b revealed that they act as functional enzymes during development, there is little biochemical evidence about how new methylation patterns are established and maintained. To study this mechanism we have cloned and expressed Dnmt3a using a baculovirus expression system. The substrate specificity of Dnmt3a and molecular mechanism of its methylation reaction were then analyzed using a novel and highly reproducible assay. We report here that Dnmt3a is a true de novo methyltransferase that prefers unmethylated DNA substrates more than 3-fold to hemimethylated DNA. Furthermore, Dnmt3a binds DNA nonspecifically, regardless of the presence of CpG dinucleotides in the DNA substrate. Kinetic analysis supports an Ordered Bi Bi mechanism for Dnmt3a, where DNA binds first, followed by S-adenosyl-l-methionine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号