首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of adenovirus 7-simian virus 40 (SV40) hybrid (strain LL "E-46") to replicate decreased exponentially as a function of the amount of gamma-irradiation; the ability to induce SV40 and adenovirus 7 T antigen decreased at a much slower rate. Nevertheless, the virus was still able to transform African green monkey kidney cells at a radiation dosage that had completely destroyed its replication ability. All transformed colonies were positive for SV40 T antigen but were negative for adenovirus 7 T antigen. The adenovirus 7-SV40 hybrid transformed cells were superinfectible with SV40 virus. Two of the three transformed cell populations apparently did not sensitize hamsters against the appearance SV40 primary tumors, thus suggesting a deficiency in the SV40 transplantation antigen.  相似文献   

2.
3.
Butel, Janet S. (Baylor University College of Medicine, Houston, Tex.), and Fred Rapp. Replication in simian cells of defective viruses in an SV40-adenovirus "hybrid" population. J. Bacteriol. 91:278-284. 1966.-An SV40-adenovirus type 7 "hybrid" virus population, previously shown to contain two viruses capable of complementation in green monkey kidney (GMK) cells, has a growth cycle in GMK cells similar to that of adenovirus type 7 in the presence of SV40. Extending previous preliminary results, the addition of adenovirus types 2, 7, or 12 to monolayers of GMK cells enhanced plaque formation by the SV40-adenovirus hybrid by as much as 200-fold. The terminal enhanced plaques, initiated by the hybrid in the presence of helper adenovirus, were found to contain progeny which could induce the synthesis of SV40 tumor antigen but which were coated with the protein of the helper adenovirus, type 2, 7, or 12, respectively. The particle carrying the SV40 tumor antigen determinant, named PARA, is defective in that it cannot direct the synthesis of capsid protein; information for the coat for PARA is supplied by the adenovirus. One-step growth curves of the hybrid virus population in monkey cells revealed that synthesis of both types of particles, adenovirus and PARA, proceeds at a similar rate, with a latent period of 16 to 20 hr being followed by an exponential increase in titer during the following 20 hr. Maximal titers for both particles were obtained 48 hr after inoculation of the cultures. Neither the PARA nor the adenovirus component replicated in GMK cells in the absence of the other.  相似文献   

4.
Studies on the adenovirus type 2-simian virus 40 (SV40) hybrid population demonstrated two genetically stable variants within this population, which were isolated by plaquing in African green monkey kidney cells. These variants were similar in that each induced SV40 T antigen in human embryonic kidney cells and contained similar concentrations of nonhybrid adenovirus type 2 virions and adenovirus-encapsidated particles containing the infectious SV40 genome. These variants differed markedly, however, in their ability to produce SV40 viral antigen in human embryonic kidney cells and the efficiency with which they produce SV40 plaques in monkey cell monolayers. It is postulated that the differences in SV40-yielding efficiency between these variants lie in the nature of the recombinant deoxyribonucleic acid composing the genome of the hybrid particles.  相似文献   

5.
Simian virus 40 (SV 40) stimulated a host cell antigen in the centriolar region after infection of African green monkey kidney (AGMK) cells. The addition of puromycin and actinomycin D to cells infected with SV40 within 5 h after infection inhibited the stimulation of the host cell antigen, indicating that de novo protein and RNA syntheses that occurred within the first 5 h after infection were essential for the stimulation. Early viable deletion mutants of SV40 with deletions mapping between 0.54 and 0.59 map units on the SV40 genome, dl2000, dl2001, dl2003, dl2004, dl2005, dl2006, and dl2007, did not stimulate the centriolar antigen above the level of uninfected cells. This indicated that an intact, functional small-t protein was essential for the SV40-mediated stimulation of the host cell antigen. Our studies, using cells infected with nondefective adenovirus-SV40 hybrid viruses that lack the small-t gene region of SV40 (Ad2+ND1, Ad2+ND2, Ad2+ND3, Ad2+ND4, and Ad2+ND5), revealed that the lack of small-t gene function of SV40 could be complemented by a gene function of the adenovirus-SV40 hybrid viruses for the centriolar antigen stimulation. Thus, adenovirus 2 has a gene(s) that is analogous to the small-t gene of SV40 for the stimulation of the host cell antigen in AGMK cells.  相似文献   

6.
The simian virus 40 (SV40)-yielding variants of the adenovirus type 2 (Ad.2)-SV40 hybrid (Ad.2(++)) population were studied by means of fixed-angle equilibrium density gradient centrifugation in cesium chloride. The hybrid virions of the Ad.2(++) high-efficiency yielder population banded at densities of 0.004 g/cm(3) lighter than the nonhybrid Ad.2 virions. The degree of separation of the hybrid particles was sufficient to permit greater than 100-fold relative purification by two cycles of centrifugation. Hybrid particles that produce adenovirus plaques in African green monkey kidney cells by two-hit kinetics (one-hit kinetics when assayed on lawns of nonhybrid adenovirus) were not separable from the particles that yield SV40 virus. The hybrid particle in the Ad.2(++) low-efficiency yielder population was not separable from the nonhybrid Ad.2 virions.  相似文献   

7.
Malmgren, Richard A. (National Cancer Institute; Bethesda, Md.), Alan S. Rabson, Paula G. Carney, and Frances J. Paul. Immunofluorescence of green monkey kidney cells infected with adenovirus 12 and with adenovirus 12 plus simian virus 40. J. Bacteriol. 91:262-265. 1966.-Immunofluorescence studies of the viral antigens and tumor (T) antigens of adenovirus 12 and simian virus 40 (SV40) in green monkey kidney (GMK) cells infected with adenovirus 12 alone or in combination with the SV40 virus showed that the adenovirus 12 viral antigen was produced in detectable amounts only in the cells infected with both viruses. The adenovirus 12 T antigen, on the other hand, was formed in the GMK cells infected with the adenovirus 12 only. This antigen was formed as early as 18 hr after viral infection, and persisted for at least 48 hr after virus infection. There was a correlation between the appearance of the immunofluorescent T antigen in the nucleus and the electron microscope appearance of "nuclear stippling," which developed in the nuclei of GMK cells after infection with adenovirus 12 only, as well as after infection with both viruses.  相似文献   

8.
The Ad2++hey hybrid virus population produces simian virus 40 (SV40) efficiently during lytic infection, whereas Ad2++ley does not, although both hybrids contain a complete SV40 genome. In this report, we demonstrate the synthesis of nonhydrid SV40 DNA in Ad2++HEY-infected Vero cells, but only early SV40 RNA is transcribed efficiently in Ad2++LEY-infected cells. Ad2++HEY induces SV40 U, T, and V antigens during lytic infection of African green monkey kidney cells, whereas Ad2++LEY induces only SV40 U and T antigens. These variations in the behavior of Ad2++HEY and Ad2++LEY regarding expression of SV40 functions probably reflect differences in the rate of SV40 excision from the hybrid genomes.  相似文献   

9.
Integration of simian virus 40 (SV40) deoxyribonucleic acid (DNA) into cellular DNA occurred when permissive African green monkey kidney (CV-1) cells were infected at a low multiplicity of SV40 in the presence of cytosine arabinoside.  相似文献   

10.
Seven lines derived from primary African green monkey kidney cells, which had survived lytic infection by wild-type simian virus 40 (SV40) or temperature-sensitive mutants belonging to the A and B complementation groups, were established. These cultures synthesize SV40 tumor (T) antigen constitutively and have been passaged more than 60 times in vitro. The cells released small amounts of virus even at high passage levels but eventually became negative for the spontaneous release of virus. Virus rescued from such "nonproducer" cells by the transfection technique exhibited the growth properties of the original inoculum virus. Four of the cell lines were tested for the presence of altered growth patterns commonly associated with SV40-induced transformation. Although each of the cell lines was greater than 99% positive for T antigen, none of the cultures could be distinguished from primary or stable lines of normal simian cells on the basis of morphology, saturation density in high or low serum concentrations, colony formation on plastic or in soft agar, hexose transport, or concanavalin A agglutinability. However, the cells could be distinguished from the parental green monkey kidney cells by a prolonged life span, the presence of T antigen, a resistance to the replication of superinfecting SV40 virus or SV40 viral DNA, and, with three of the four lines, an ability to complement the growth of human adenovirus type 7. These properties were expressed independent of the temperature of incubation. These results indicate that the presence of an immunologically reactive SV40 T antigen is not sufficient to ensure induction of phenotypic transformation and suggest that a specific interaction between viral and cellular genes and/or gene products may be a necessary requirement.  相似文献   

11.
African green monkey kidney (AGMK) cells were nonpermissive hosts for type 2 adenovirus although the restriction was not complete; when only 3 plaque-forming units/cell was employed as the inoculum, the viral yield was about 0.1% of the maximum virus produced when simian virus 40 (SV40) enhanced adenovirus multiplication. The viral yield of cells infected only with type 2 adenovirus increased as the multiplicity of infection was increased. Type 2 adenovirus could infect almost all AGMK cells in culture; adenovirus-specific early proteins and DNA were synthesized in most cells, but small amounts of late proteins were made in relatively few cells. Even when cells were infected with both SV40 and adenovirus, only about 50% were permissive for synthesis of adenovirus capsid proteins. Approximately the same quantity of adenovirus deoxyribonucleic acid (DNA) was synthesized in the restricted as in the SV40-enhanced infection. However, in cells infected with SV40 and type 2 adenovirus, replication of SV40 DNA was blocked, multiplication of SV40 was accordingly inhibited, and synthesis of host DNA was not stimulated. To enhance propagation of type 2 adenovirus, synthesis of an early SV40 protein was essential; 50 mug of cycloheximide per ml prevented the SV40-induced enhancement of adenovirus multiplication, whereas 5 x 10(-6)m 5-fluoro-2-deoxyuridine did not abrogate the enhancing phenomenon.  相似文献   

12.
Ad2++ HEY and Ad2++ LEY are two adenovirus 2(Ad2)-simian virus 40 (SV40) hybrids distinguished by differences in the efficiency with which they produce SV40 progeny in lytically infected African green monkey kidney cells. These virus populations are composed of nonhybrid Ad2 and hybrid virions, the majority of which contain more than 1 unit of SV40 DNA. The Ad2++ HEY and LEY populations also differ in their ability to induce SV40 transplantation immunity in rodents. Only Ad2++ HEY induces SV40 transplantation immunity in hamsters, whereas both viruses induce significant SV40 transplantation immunity in adult BALB/c mice.  相似文献   

13.
Pretreatment of African green monkey kidney cells with 50 mu g of 5'-iododeoxyruidine (IUdR) per ml can modify their susceptibility to the replication of human adenovirus type 7 in the absence of simian virus 40 (SV40) although this enhancement of adenovirus replication is not as efficient as that of the helper SV40 virus. Since the number of infectious centers remains unchanged after IUdR pretreatment whereas the burst size of virus from each infected cell increases, the IUdR appears to allow each infected cell to produce more virus. Cell DNA synthesis appears to be stimulated in IUdR pretreated cells infected with adenovirus 7, but the host cell DNA synthesized is small enough to remain in the Hirt supernatant fluid. The modification of susceptibility to adenovirus replication and the changed pattern of cell DNA synthesis is stable for at least two additional cell passages of the pretreated cells.  相似文献   

14.
The carboxyl-terminal portion of simian virus 40 large T antigen is essential for productive infection of CV-1 and CV-1p green monkey kidney cells. Mutant dlA2459, lacking 14 base pairs at 0.193 map units, was positive for viral DNA replication, but unable to form plaques in CV-1p cells (J. Tornow and C.N. Cole, J. Virol. 47:487-494, 1983). In this report, the defect of dlA2459 is further defined. Simian virus 40 late mRNAs were transcribed, polyadenylated, spliced, and transported in dlA2459-infected cells, but the level of capsid proteins produced in infected CV-1 green monkey kidney cells was extremely low. dlA2459 large T antigen lacks those residues known to be required for adenovirus helper function, and the block to productive infection by dlA2459 occurs at the same stage of infection as the block to productive adenovirus infection of CV-1 cells. These results suggest that the adenovirus helper function is required for productive infection by simian virus 40. Mutant dlA2459 was able to grow on the Vero and BSC-1 lines of African green monkey kidney cells. Additional mutants affecting the carboxyl-terminal portion of large T were prepared. Mutant inv2408 contains an inversion of the DNA between the BamHI and BclI sites (0.144 to 0.189 map units). This inversion causes transposition of the carboxyl-terminal 26 amino acids of large T antigen and the carboxyl-terminal 18 amino acids of VP1. This mutant was viable, even though the essential information absent from dlA2459 large T antigen has been transferred to the carboxyl terminus of VP1 of inv2408. The VP1 polypeptide carrying this carboxyl-terminal portion of large T could overcome the defect of dlA2459. This indicates that the carboxyl terminus of large T antigen is a separate and separable functional domain.  相似文献   

15.
16.
Transformation of Mouse Macrophages by Simian Virus 40   总被引:3,自引:0,他引:3       下载免费PDF全文
Studies were undertaken to prove that simian virus 40 (SV40) can transform the mouse macrophage, a cell type naturally restricted from deoxyribonucleic acid (DNA) replication. Balb/C macrophages infected with SV40 demonstrated T-antigen production and induced DNA synthesis simultaneously. In the absence of apparent division, these cells remained T antigen-positive for at least 45 days. SV40 could be rescued from nondividing, unaltered macrophages during the T antigen-producing period. Proliferating transformants appeared at an average of 66 days post-SV40 infection. Established cell lines were T antigen-positive and were negative for infectious virus, but yielded SV40 after fusion with African green monkey kidney cells. Their identity as transformed macrophages was substantiated by evaluation of cellular morphology, phagocytosis, acid phosphatase, beta(1c) synthesis, and aminoacridine incorporation.  相似文献   

17.
Adenovirus type 2 (Ad2) grows 1,000 times less well in monkey cells than in human cells. This defect can be overcome, not only upon co-infection of cells with simian virus 40 (SV40), but also when the relevant part of the SV40 genome is integrated into the adenovirus genome to form an adenovirus-SV40 hybrid virus. We have used the nondefective Ad2-SV40 hybrid virus Ad2+ND1, which contains an insertion of 17% of the SV40 genome, to isolate host-range mutants which are defective in growth on monkey cells although they grow normally on human cells. Like Ad2, these mutants are defective in the synthesis of late proteins in monkey cells. A 30,000-molecular-weight protein (30K), unique to Ad2+ND1-infected cells, can be synthesized in vitro, using Ad2+ND1 mRNA that contains SV40 sequences. 30K is not seen in cells infected with those host-range mutants that are most defective in growth on monkey cells, and translation in vitro of SV40-specific mRNA from these cells produces new unique polypeptides, instead of 30K. Genetic and biochemical analyses indicate that these mutants carry point mutations rather than deletions.  相似文献   

18.
Treatment of African green monkey kidney CV-1 cells with human alpha interferons before infection with simian virus 40 (SV40) inhibited the accumulation of SV40 mRNAs and SV40 T-antigen (Tag). This inhibition persisted as long as the interferons were present in the medium. SV40-transformed human SV80 cells and mouse SV3T3-38 cells express Tag, and interferon treatment of these cells did not affect this expression. SV80 and SV3T3-38 cells which had been exposed to interferons were infected with a viable SV40 deletion mutant (SV40 dl1263) that codes for a truncated Tag. Exposure to interferons inhibited the accumulation of the truncated Tag (specified by the infecting virus) but had no significant effect on the accumulation of the endogenous Tag (specified by the SV40 DNA integrated into the cellular genome). The level of Tag in SV40-transformed mouse SV101 cells was not significantly decreased by interferon treatment. SV40 was rescued from SV101 cells and used to infect interferon-treated and control African green monkey kidney Vero cells. Tag accumulation was inhibited in the cells which had been treated with interferons before infection. Our data demonstrate that even within the same cell the interferon system can discriminate between expression of a gene in the SV40 viral genome and expression of the same gene integrated into a host chromosome.  相似文献   

19.
Four new nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated. Although these viruses (designated Ad2(+)ND(2), Ad2(+)ND(3), Ad2(+)ND(4), and Ad2(+)ND(5)) were clonal derivatives of the same Ad2-SV40 hybrid population, they differ significantly from each other and from the previously isolated nondefective hybrid, Ad2(+)ND(1), in their biological properties or in the amount of SV40-specific RNA induced during lytic infection.Like Ad2(+)ND(1), Ad2(+)ND(2), and Ad2(+)ND(4) pass serially in both human embryonic kidney (HEK) and primary African green monkey kidney cells. In contrast, Ad2(+)ND(3) and Ad2(+)ND(5) pass serially only in HEK cells. Ad2(+)ND(2) is like Ad2(+)ND(1) in that it induces the SV40 U antigen, but not SV40 T antigen; however, in contrast to the perinuclear SV40 antigen induced by Ad2(+)ND(1), the SV40 antigen induced by Ad2(+)ND(2) is located peripherally in the cytoplasm as well as in the perinuclear region of infected cells. Ad2(+)ND(4) induces both the SV40 T and U antigens. Ad2(+)ND(3) and Ad2(+)ND(5) do not induce serologically detectable SV40 antigens and are distinguished from each other on the basis of the relative quantities of SV40-specific RNA which they induce. The induction of different SV40-specific functions suggests the incorporation of different segments of SV40 DNA within the genomes of the respective hybrid viruses.  相似文献   

20.
A comparative study of simian virus 40 (SV40) lytic infection in three different monkey cell lines is described. The results demonstrate that viral deoxyribonucleic acid (DNA) synthesis and infectious virus production begin some 10 to 20 hr earlier in CV-1 cells and primary African green monkey kidney (AGMK) cells than in BSC-1 cells. Induction of cellular DNA synthesis by SV40 was observed in CV-1 and AGMK cells but not with BSC-1 cells. Excision of large molecular weight cellular DNA to smaller fragments was easily detectable late in infection of AGMK cells. Little or no excision was observed at comparable times after infection of CV-1 and BSC-1 cells. The different kinds of responses of these three monkey cell lines during SV40 lytic infection suggest the involvement of cellular functions in the virus-directed induction of cellular DNA synthesis and the excision of this DNA from the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号