首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究烟草黑胫病不同亲本来源的抗性遗传规律,定位抗性基因位点,本研究利用抗黑胫病品种Beinhart1000-1构建了220个F2分离群体。通过病圃接种鉴定和遗传分析,确定Beinhart1000-1对烟草黑胫病的抗性由多基因控制。利用筛选到的70对稳定SSR引物对烟草黑胫病抗性进行了QTL分析,绘制了一张包含14条染色体的遗传连锁图谱,且定位到5个与烟草黑胫病抗性紧密相关的QTLs,分别在2、3、3、6、12号染色体上,其贡献率分别为6.2%、6.0%、6.7%、5.6%和5.1%。此结果使烟草黑胫病抗性研究进一步深入,推进了烟草黑胫病分子标记辅助选择。  相似文献   

2.
Bacterial wilt caused by Ralstonia solanacearum is one of the most destructive soil-borne diseases in the world. Breeding resistant commercial varieties of tobacco is difficult because most donor candidates' resistance is controlled by polygenes. In this paper, we demonstrate the identification of useful DNA markers for bacterial wilt-resistant tobacco breeding. One hundred and seventeen markers were identified by the amplified fragment length polymorphism (AFLP) method between W6, a burley variety with resistance originating from a Japanese domestic variety, Hatano, and Michinoku 1, a commercial burley wilt-susceptible variety, using 3,072 primer combinations. These markers were analyzed in 125 doubled haploid lines, derived from F(1) hybrids between W6 and Michinoku 1, and a linkage map consisting of ten linkage groups was drawn. The resistance phenotype of each of these lines was investigated on the basis of the average of disease severity obtained from field trials over two growing cycles. Quantitative trait loci (QTL) analysis was performed on the marker phenotypes and the resistance phenotype of each line. One QTL for the bacterial wilt resistance of W6 and DNA markers associated with this QTL were identified on a linkage group consisting of 15 markers, 32 cM in length. This QTL explained more than 30% of the variance in resistance among these lines.  相似文献   

3.
Flax (Linum usitatissimum L.) seeds contain nearly 50% oil which is high in linolenic acid (an omega-3 fatty acid). In this study, a genetic linkage map was constructed based on 114 expressed sequence tag-derived simple sequence repeat (SSR) markers in addition to five single nucleotide polymorphism markers, five genes (fad2A, fad2B, fad3A, fad3B and dgat1) and one phenotypic trait (seed coat color), using a doubled haploid (DH) population of 78 individuals generated from a cross between SP2047 (a yellow-seeded Solin™ line with 2–4% linolenic acid) and UGG5-5 (a brown-seeded flax line with 63–66% linolenic acid). This map consists of 24 linkage groups with 113 markers spanning ~833.8 cM. Quantitative trait locus (QTL) analysis detected two major QTLs each for linoleic acid (LIO, QLio.crc-LG7, QLio.crc-LG16), linolenic acid (LIN, QLin.crc-LG7, QLin.crc-LG16) and iodine value (IOD, QIod.crc-LG7, QIod.crc-LG16), and one major QTL for palmitic acid (PAL, QPal.crc-LG9). The mutant allele of fad3A, mapped to the chromosomal segment inherited from the parent SP2047, underlies the QTL on linkage group 7 and was positively associated with high LIO content but negatively associated with LIN and IOD. This fad3A locus accounted for approximately 34, 25 and 29% of the phenotypic variation observed in this DH population for these three traits, respectively. The QTL localized on linkage group 16 explained approximately 20, 25 and 13% of the phenotypic variation for these same traits, respectively. For palmitic acid, QPal.crc-LG9 accounted for ~42% of the phenotypic variation. This first SSR-based linkage map in flax will serve as a resource for mapping additional markers, genes and traits, in map-based cloning and in marker-assisted selection.  相似文献   

4.
A segregating population of F1-derived doubled haploid (DH) lines of Brassica oleracea was used to detect and locate QTLs controlling 27 morphological and developmental traits, including leaf, flowering, axillary bud and stem characters. The population resulted from a cross between two very different B. oleracea crop types, an annual cauliflower and a biennial Brussels sprout. A principal component analysis (PCA), based on line means, allowed all the traits to be grouped into distinct categories according to the first five Principal Components. These were: leaf traits (PC1), flowering traits (PC2), axillary bud traits (PC3 and 5) and stem traits (PC4). Between zero and four putative QTL were located per trait, which individually explained between 6% and 43% of the additive genetic variation, using the multiple-marker regression approach to QTL mapping. For lamina width, bare petiole length and stem length two QTL with opposite effects were detected on the same linkage groups. Intra- and inter-specific comparative mapping using RFLP markers identified a QTL on linkage group O8 accounting for variation in vernalisation, which is probably synonymous with a QTL detected on linkage group N19 of Brassica napus. In addition, a QTL for petiole length detected on O3 of this study appeared to be homologous to a QTL detected on another B. oleracea genetic map (Camargo et al. 1995). Received: 28 March 2001 / Accepted: 25 June 2001  相似文献   

5.
A linkage map of the Lathyrus sativus genome was constructed using 92 backcross individuals derived from a cross between an accession resistant (ATC 80878) to ascochyta blight caused by Mycosphaerella pinodes and a susceptible accession (ATC 80407). A total of 64 markers were mapped on the backcross population, including 47 RAPD, seven sequence-tagged microsatellite site and 13 STS/CAPS markers. The map comprised nine linkage groups, covered a map distance of 803.1 cM, and the average spacing between markers was 15.8 cM. Quantitative trait loci (QTL) associated with ascochyta blight resistance were detected using single-point analysis and simple and composite interval mapping. The backcross population was evaluated for stem resistance in temperature-controlled growth room trials. One significant QTL, QTL1, was located on linkage group 1 and explained 12% of the phenotypic variation in the backcross population. A second suggestive QTL, QTL2, was detected on linkage group 2 and accounted for 9% of the trait variation. The L. sativus R-QTL regions detected may be targeted for future intergenus transfer of the trait into accessions of the closely related species Pisum sativum.  相似文献   

6.
In eastern Australia and California, USA, one of the major lethal fungal diseases of lucerne (Medicago sativa) is Stagonospora root and crown rot, caused by Stagonospora meliloti. Quantitative trait loci (QTL) involved in resistance and susceptibility to S. meliloti were identified in an autotetraploid lucerne backcross population of 145 individuals. Using regression analysis and interval mapping, we detected one region each on linkage groups 2, 6 and 7 that were consistently associated with disease reaction to S. meliloti in two separate experiments. The largest QTL on linkage group 7, which is associated with resistance to S. meliloti, contributed up to 17% of the phenotypic variation. The QTL located on linkage group 2, which is potentially a resistance allele in repulsion to the markers for susceptibility to S. meliloti, contributed up to 8% of the phenotypic variation. The QTL located on linkage group 6, which is associated with susceptibility to S. meliloti, contributed up to 16% of the phenotypic variation. A further two unlinked markers contributed 5 and 8% of the phenotypic variation, and were detected in only one experiment. A total of 517 simple sequence repeat (SSR) markers from Medicago truncatula were screened on the parents of the mapping population. Only 27 (6%) SSR markers were polymorphic and could be incorporated into the autotetraploid map of M. sativa. This allowed alignment of our M. sativa linkage map with published M. truncatula maps. The markers linked to the QTL we have reported will be useful for marker assisted selection for partial resistance to S. meliloti in lucerne.  相似文献   

7.
Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), is an important sugar-beet disease worldwide and can result in severe losses of root yield and sugar content. We have identified a major QTL for BNYVV resistance from a new source in a segregating population of 158 individuals. The QTL explained an estimated 78% of the observed phenotypic variation and the gene conferring the partial resistance is referred to as Rz4. AFLP was used in combination with bulked segregant analysis (BSA) to develop markers linked to the resistance phenotype. AFLP marker analysis was extended to produce a linkage map that was resolved into nine linkage groups. These were anchored to the nine sugar-beet chromosomes using previously published SNP markers. This represents the first anchored sugar-beet linkage map to be published with non-anonymous markers. The final linkage map comprised 233 markers covering 497.2 cM, with an average interval between markers of 2.1 cM. The Rz4 QTL and an Rz1 RAPD marker were mapped to chromosome III, the known location of the previously identified BNYVV resistance genes Rz1, Rz2 and Rz3. The availability to breeders of new resistance sources such as Rz4 increases the potential for breeding durable disease resistance.  相似文献   

8.
A rye doubled haploid (DH) mapping population (Amilo × Voima) segregating for pre-harvest sprouting (PHS) was generated through anther culture of F1 plants. A linkage map was constructed using DHs, to our knowledge, for the first time in rye. The map was composed of 289 loci: amplified fragment length polymorphism (AFLP), microsatellite, random amplified polymorphic DNA (RAPD), retrotransposon-microsatellite amplified polymorphism (REMAP), inter-retrotransposon amplified polymorphism (IRAP), inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers, and extended altogether 732 cM (one locus in every 2.5 cM). All of the seven rye chromosomes and four unplaced groups were formed. Distorted segregation of markers (P ≤ 0.05) was detected on all chromosomes. One major quantitative trait locus (QTL) affecting α-amylase activity was found, which explained 16.1% of phenotypic variation. The QTL was localized on the long arm of chromosome 5R. Microsatellites SCM74, RMS1115, and SCM77, nearest to the QTL, can be used for marker-assisted selection as a part of a rye breeding program to decrease sprouting damage.  相似文献   

9.
The introgression of winter germplasm into spring canola (Brassica napus L.) represents a novel approach to improve seed yield of hybrid spring canola. In this study, quantitative trait loci (QTL) for seed yield and other traits were genetically mapped to determine the effects of genomic regions introgressed from winter germplasm into spring canola. Plant materials used comprised of two populations of doubled haploid (DH) lines having winter germplasm introgression from two related French winter cultivars and their testcrosses with a spring line used in commercial hybrids. These populations were evaluated for 2 years at two locations (Wisconsin, USA and Saskatchewan, Canada). Genetic linkage maps based on RFLP loci were constructed for each DH population. Six QTL were detected in the testcross populations for which the winter alleles increased seed yield. One of these QTL explained 11 and 19% of the phenotypic variation in the two Canadian environments. The winter allele for another QTL that increased seed yield was linked in coupling to a QTL allele for high glucosinolate content, suggesting that the transition of rapeseed into canola could have resulted in the loss of favorable seed yield alleles. Most QTL for which the introgressed allele decreased seed yield of hybrids mapped to genomic regions having homoeologous non-reciprocal transpositions. This suggests that allelic configurations created by these rearrangements might make an important contribution to genetic variation for complex traits in oilseed B. napus and could account for a portion of the heterotic effects in hybrids. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

10.
PK23-2, a line of six-rowed barley (Hordeum vulgare L.) originating from Pakistan, has resistance to Japanese strains I and III of the barley yellow mosaic virus (BaYMV). To identify the source of resistance in this line, reciprocal crosses were made between the susceptible cultivar Daisen-gold and PK23-2. Genetic analyses in the F1 generation, F2 generation, and a doubled haploid population (DH45) derived from the F1 revealed that PK23-2 harbors one dominant and one recessive resistance genes. A linkage map was constructed using 61 lines of DH45 and 127 DNA markers; this map covered 1268.8 cM in 10 linkage groups. One QTL having a LOD score of 4.07 and explaining 26.8% of the phenotypic variance explained (PVE) for resistance to BaYMV was detected at DNA marker ABG070 on chromosome 3H. Another QTL having a LOD score of 3.53 and PVE of 27.2% was located at marker Bmag0490 on chromosome 4H. The resistance gene on chromosome 3H, here named Rym17, showed dominant inheritance, whereas the gene on chromosome 4H, here named rym18, showed recessive inheritance in F1 populations derived from crosses between several resistant lines of DH45 and Daisen-gold. The BaYMV recessive resistance genes rym1, rym3, and rym5, found in Japanese barley germplasm, were not allelic to rym18. These results revealed that PK23-2 harbors two previously unidentified resistance genes, Rym17 on 3H and rym18 on 4H; Rym17 is the first dominant BaYMV resistance gene to be identified in primary gene pool. These new genes, particularly dominant Rym17, represent a potentially valuable genetic resource against BaYMV disease.  相似文献   

11.
The japonica rice cultivar Hokkai 188 shows a high level of partial resistance to leaf blast. For mapping genes conferring the resistance, a set of 190 F2 progeny/F3 families was developed from the cross between the indica rice cultivar Danghang-Shali, with a low level of partial resistance, and Hokkai 188. Partial resistance to leaf blast in the F3 families was assessed in upland nurseries. From a primary microsatellite (SSR) linkage map and QTL analysis using a subset of 126 F2 progeny/F3 families randomly selected from the above set, one major QTL located on chromosome 1 was detected in the vicinity of SSR marker RM1216. This QTL was responsible for 69.4% of the phenotypic variation, and Hokkai 188 contributed the resistance allele. Segregation analysis in the F3 families for partial resistance to leaf blast was in agreement with the existence of a major gene, and the gene was designated as Pi35(t). Another QTL detected on chromosome 8 was minor, explained 13.4% of the phenotypic variation, and an allele of Danghang-Shali increased the level of resistance in this QTL. Additional SSR markers of the targeted Pi35(t) region were further surveyed in the 190 F2 plants, and Pi35(t) was placed in a 3.5-cM interval flanked by markers RM1216 and RM1003.  相似文献   

12.
Flag smut, caused by Urocystis agropyri, has been a problem in wheat production, but its incidence has declined with the use of resistant varieties and seed dressing. Diamondbird, an Australian wheat cultivar that carries high levels of resistance to flag smut, was crossed with susceptible Chinese landrace TH3929 and a doubled haploid (DH) population was developed. A linkage map comprising 386 markers was used for detection of genomic regions controlling flag smut resistance. Composite interval mapping identified five quantitative trait loci (QTL) with significant effects for flag smut resistance. QTL QFs.sun-3AL, QFs.sun-6AS, QFs.sun-1BL and QFs.sun-5BS were contributed by Diamondbird. Although TH3929 was susceptible, it contributed a minor QTL QFs.sun-3AS. QTL QFs.sun-3AL and QFs.sun-6AS were detected in both seasons and each explained more than 17 % of the variation in flag smut response. Other QTL QFs.sun-3AS, QFs.sun-1BL and QFs.sun-5BS explained 5–10 % of the phenotypic variation. DH lines that showed low flag smut levels carried combinations of three or more QTL. This is the first report on chromosomal location of flag smut resistance in a modern common wheat cultivar.  相似文献   

13.
Groundnut bruchid (Caryedon serratus Olivier) is a major storage insect pest that significantly lowers the quality and market acceptance of the produce. Screening for resistance against groundnut bruchid in field conditions is difficult due to the variation in environmental factors and possible occurrence of biotypes. Hence, identification of tightly linked markers or quantitative trait loci (QTLs) is needed for selection and pyramiding of resistance genes for durable resistance. A population of recombinant inbred lines derived from a cross between VG 9514 (resistant) and TAG 24 (susceptible) was screened for five component traits of bruchid resistance in 2 years. The same population was genotyped with 221 polymorphic marker loci. A genetic linkage map covering 1,796.7 cM map distance was constructed with 190 marker loci in cultivated groundnut. QTL analysis detected thirteen main QTLs for four components of bruchid resistance in nine linkage groups and 31 epistatic QTLs for total developmental period (TDP). Screening in 2 years for bruchid resistance identified two common main QTLs. The common QTL for TDP, qTDP-b08, explained 57–82 % of phenotypic variation, while the other common QTL for adult emergence, qAE2010/11-a02, explained 13–21 % of phenotypic variation. Additionally, three QTLs for TDP, adult emergence and number of holes and one QTL for pod weight loss were identified which explained 14–39 % of phenotypic variation. This is the first report on identification of multiple main and epistatic loci for bruchid resistance in groundnut.  相似文献   

14.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

15.
Crown rot (CR) is one of the most destructive diseases of barley and wheat. Fusarium species causing CR survive in crop residue and a growing acceptance of stubble retention practices has exacerbated disease severity and yield loss. Growing resistant cultivars has long been recognised as the most effective way to reduce CR damage but these are not available in barley. In a routine screening of germplasm, a barley landrace from China gave the best CR resistance among the genotypes tested. Using a doubled haploid population derived from this landrace crossed to Franklin, we demonstrate that the CR resistance of TX9425 was conditioned by a major QTL. The QTL, designated as Qcrs.cpi-3H, was mapped near the centromere on the long arm of chromosome 3H. Its effect is highly significant, accounting for up to 63.3% of the phenotypic variation with a LOD value of 14.8. The location of Qcrs.cpi-3H was coincident with a major QTL conferring plant height (PH) and the effect of PH on CR reaction was also highly significant. When the effect of PH was accounted for by covariance analysis, the Qcrs.cpi-3H QTL remained highly significant, accounting for over 40% of the phenotypic variation. The existence of such a major QTL implies that breeding barley cultivars with enhanced CR resistance should be feasible.  相似文献   

16.
QTL analysis for resistance to cucumber mosaic virus (CMV) was performed in an intraspecific Capsicum annuum population. A total of 180 F3 families were derived from a cross between the susceptible bell-type cultivar Maor and the resistant small-fruited Indian line Perennial and inoculated with CMV in three experiments carried out in the USA and Israel using two virus isolates. Mostly RFLP and AFLP markers were used to construct the genetic map, and interval analysis was used for QTL detection. Four QTL were significantly associated with resistance to CMV. Two digenic interactions involving markers with and without an individual effect on CMV resistance were also detected. The QTL controlling the largest percentage (16–33%) of the observed phenotypic variation (cmv11.1) was detected in all three experiments and was also involved in one of the digenic interactions. This QTL is linked to the L locus that confers resistance to tobacco mosaic virus (TMV), confirming earlier anecdotal observations of an association between resistance to CMV and susceptibility to TMV in Perennial. An advanced backcross breeding line from an unrelated population, 3990, selected for resistance to CMV was analyzed for markers covering the genome, allowing the identification of genomic regions introgressed from Perennial. Four of these introgressions included regions associated with QTL for CMV resistance. Markers in two genomic regions that were identified as linked to QTL for CMV resistance were also linked to QTL for fruit weight, confirming additional breeding observations of an association between resistance to CMV originating from Perennial and small fruit weight. Received: 17 July 2000 / Accepted: 16 October 2000  相似文献   

17.
Anthracnose, caused by Colletotrichum trifolii, is one of the most serious diseases of lucerne worldwide. The disease is managed through deployment of resistant cultivars, but new pathotypes present a challenge to the successful implementation of this strategy. This paper reports the genetic map locations of quantitative trait loci (QTL) for reaction to races 1, 2 and 4 of C. trifolii in a single autotetraploid lucerne clone, designated W126 from the Australian cv. Trifecta. Resistance was mapped in a backcross population of 145 individuals, and reaction was assessed both by spray and injection inoculation of stems. Resistance to injection inoculation with races 1 and 4 was incompletely dominant and closely linked (phenotypic markers 2.2 cM apart); these resistances mapped to a linkage group homologous to Medicago truncatula linkage group 8. When the spray inoculation data were subjected to QTL analysis, the strongest QTL for resistance was located on linkage group 8; six QTL were identified for race 1 and four for race 4. Resistance to race 2 was incompletely recessive; four QTL were identified and these include one QTL on linkage group 4 that was also identified for race 1. Modelling of the interactions between individual QTL and marker effects allowed a total of 52–63% of the phenotypic variation to be described for each of the different races. These markers will have value in breeding lucerne, carrying multiple sources of resistance to the three known races of C. trifolii.  相似文献   

18.
19.
Identification of QTLs Underlying Water-Logging Tolerance in Soybean   总被引:3,自引:0,他引:3  
Soil water-logging can cause severe damage to soybean [Glycine max (L.) Merr.] and results in significant yield reduction. The objective of this study was to identify quantitative trait loci (QTL) that condition water-logging tolerance (WLT) in soybean. Two populations with 103 and 67 F6:11 recombinant inbred lines (RILs) from A5403 × Archer (Population 1) and P9641 × Archer (Population 2), respectively, were used as the mapping populations. The populations were evaluated for WLT in manually flooded fields in 2001, 2002, and 2003. Significant variation was observed for WLT among the lines in the two populations. No transgressive tolerant segregants were observed in either population. Broad-sense heritability of WLT for populations 1 and 2 were 0.59 and 0.43, respectively. The tolerant and sensitive RILs from each population were selected to create a tolerant bulk and a sensitive bulk, respectively. The two bulks and the parents of each population were tested with 912 simple sequence repeat (SSR) markers to select candidate regions on the linkage map that were associated with WLT. Markers from the candidate regions were used to genotype the RILs in both populations. Both single marker analysis (SMA) and composite interval mapping (CIM) were used to identify QTL for WLT. Seventeen markers in Population 1 and 15 markers in Population 2 were significantly (p <0.0001) associated with WLT in SMA. Many of these markers were linked to Rps genes or QTL conferring resistance to Phytophthora sojae Kaufmann and Gerdemann. Five markers, Satt599 on linkage group (LG) A1, Satt160, Satt269, and Satt252 on LG F, and Satt485 on LG N, were significant (p <0.0001) for WLT in both populations. With CIM, a WLT QTL was found close to the marker Satt385 on LG A1 in Population 1 in 2003. This QTL explained 10% of the phenotypic variation and the allele that increased WLT came from Archer. In Population 2 in 2002, a WLT QTL was located near the marker Satt269 on LG F. This QTL explained 16% of the phenotypic variation and the allele that increased WLT also came from Archer.  相似文献   

20.
 Ninety four doubled-haploid (DH) lines obtained from the F1 between Perennial, a cucumber mosaic virus (CMV)-partially resistant Capsicum annuum line, and Yolo Wonder, a CMV-susceptible C. annuum line, were analysed with 138 markers including mostly RFLPs and RAPDs. Clustering of RAPD markers was observed on five linkage groups of the intraspecific linkage map. These clusters could correspond to the centromeric regions of pepper chromosomes. The same progenies were evaluated for restriction of CMV installation in pepper cells in order to map quantitative trait loci (QTLs) controlling CMV resistance. This component of partial resistance to CMV was quantitatively assessed using a CMV strain that induced necrotic local lesions on the inoculated leaves. The number of local lesions gave an estimation of the density of the virus-infection sites. Genotypic variance among the DH lines was highly significant for the number of local lesions, and heritability was estimated to be 0.94. Using both analysis of variance and non-parametric tests, three genomic regions significantly affecting CMV resistance were detected on chromosomes Noir, Pourpre and linkage group 3, together explaining 57% of the phenotypic variation. A digenic epistasis between one locus that controlled significant trait variation and a second locus that by itself had no demonstrable effect on the trait was found to have an effect on CMV resistance. For each QTL, the allele from Perennial was associated with an increased resistance. Implications of QTL mapping in marker-based breeding for CMV resistance are discussed. Received: 16 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号