首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In crystals of complexes of thermine and d(CGCGCG)2 molecules grown at 4, 10, and 20 °C, the numbers of thermine molecules connected to the DNA molecule were dependent on the temperature of the crystallization. Two molecules of thermine and one Mg2+ ion were connected to DNA molecule when thermine and d(CGCGCG)2 were co-crystallized at 4 and at 20 °C. When an increased concentration of magnesium and thermine molecules were co-crystallized with d(CGCGCG)2 molecules at 10 °C, three Mg2+ ions and only one thermine molecule were bound with a d(CGCGCG)2 molecule. The number of polyamines and of Mg2+ ions connected to DNA was dependent on the atomic values of the polyamine and of the metal ion. The binding of more Mg2+ ions occurred when the atomic value of Mg2+ exceeded that of the corresponding mono- or polyamine, and when the Mg2+ ion concentration was elevated. Furthermore, this study is the first documentation of a naturally occurring polyamine bound to the minor groove of DNA in a crystal structure.  相似文献   

2.
The 5′-nucleotidase (5′-ribonucleoside phosphohydrolase, EC 3.1.3.5) from bovine milk fat globule membranes was partially purified. Two separate peaks of activity were obtained from a Sepharose column and the two fractions, designated V and VI in order of elution, were collected and characterized separately. Both V and VI exhibited pH optima between 7.0 and 7.5 for AMP, GMP and CMP in the absence of metal ions. In the presence of Mg2+, a second pH optimum at 10.0 was observed with both fractions. Low concentrations of MnCl2 activated Fraction V but not Fraction VI. HgCl2 was a potent inhibitor of both fractions. The relative rates of hydrolysis of various 5′-mononucleotides differed comparing the two fractions. Optimum temperature for Pi release was 69 °C for both fractions. Activation energies were 10 400 cal/mole and 9600 cal/mole for Fractions V and VI, respectively. For V, calculated Km values for AMP, GMP and CMP were 0.94, 2.5 and 1.16 mM, respectively. Calculated Km values for Fraction VI for AMP, GMP and CMP were 5.0, 3.95 and 1.73 mM, respectively. ATP was a competitive inhibitor of AMP hydrolysis by Fraction V and a noncompetitive inhibitor of AMP hydrolysis by Fraction VI. Both fractions contained chloroform-methanol-extractable phospholipid. The phospholipid distribution pattern of Fraction VI was similar to that of milk fat globule membranes. Fraction V contained only sphingomyelin and phosphatidylcholine. It is proposed that milk fat globule membranes contain two separate 5′-nucleotidases.  相似文献   

3.
The thermal sensitivity of metabolic performance in vertebrates requires a better understanding of the temperature sensitivity of cardiac function. The cardiac sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) is vital for excitation–contraction (E–C) coupling and intracellular Ca2+ homeostasis in heart cells. To better understand the thermal dependency of cardiac output in vertebrates, we present comparative analyses of the thermal kinetics properties of SERCA2 from ectothermic and endothermic vertebrates. We directly compare SR ventricular microsomal preparations using similar experimental conditions from sarcoplasmic reticulum isolated from cardiac tissues of mammals and fish. The experiments were designed to delineate the thermal sensitivity of SERCA2 and its role in thermal sensitivity Ca2+ uptake and E–C coupling. Ca2+ transport in the microsomal SR fractions from rabbit and bigeye tuna (Thunnus obesus) ventricles were temperature dependent. In contrast, ventricular SR preparations from coho salmon (Onchorhychus kisutch) were less temperature dependent and cold tolerant, displaying Ca2+ uptake as low as 5 °C. As a consequence, the Q10 values in coho salmon were low over a range of different temperature intervals. Maximal Ca2+ transport activity for each species occurred in a different temperature range, indicating species-specific thermal preferences for SERCA2 activity. The mammalian enzyme displayed maximal Ca2+ uptake activity at 35 °C, whereas the fish (tuna and salmon) had maximal activity at 30 °C. At 35 °C, the rate of Ca2+ uptake catalyzed by the bigeye tuna SERCA2 decreased, but not the rate of ATP hydrolysis. In contrast, the salmon SERCA2 enzyme lost its activity at 35 °C, and ATP hydrolysis was also impaired. We hypothesize that SERCA2 catalysis is optimized for species-specific temperatures experienced in natural habitats and that cardiac aerobic scope is limited when excitation–contraction coupling is impaired at low or high temperatures due to loss of SERCA2 enzymatic function.  相似文献   

4.
N-Acetylneuraminic acid, an important component of glycoconjugates with various biological functions, can be produced from N-acetyl-d-glucosamine (GlcNAc) and pyruvate using a one-pot, two-enzyme system consisting of N-acyl-d-glucosamine 2-epimerase (AGE) and N-acetylneuraminate lyase (NAL). In this system, the epimerase catalyzes the conversion of GlcNAc into N-acetyl-d-mannosamine (ManNAc). However, all currently known AGEs have one or more disadvantages, such as a low specific activity, substantial inhibition by pyruvate and strong dependence on allosteric activation by ATP. Therefore, four novel AGEs from the cyanobacteria Acaryochloris marina MBIC 11017, Anabaena variabilis ATCC 29413, Nostoc sp. PCC 7120, and Nostoc punctiforme PCC 73102 were characterized. Among these enzymes, the AGE from the Anabaena strain showed the most beneficial characteristics. It had a high specific activity of 117 ± 2 U mg−1 at 37 °C (pH 7.5) and an up to 10-fold higher inhibition constant for pyruvate as compared to other AGEs indicating a much weaker inhibitory effect. The investigation of the influence of ATP revealed that the nucleotide has a more pronounced effect on the Km for the substrate than on the enzyme activity. At high substrate concentrations (≥200 mM) and without ATP, the enzyme reached up to 32% of the activity measured with ATP in excess.  相似文献   

5.
Otacilio C. Moreira 《BBA》2005,1708(3):411-419
The bidentate complex of ATP with Cr3+, CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca2+-ATPase and the Na+,K+-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca2+ and Na+, respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca2+-ATPase. The complex inhibited with similar efficiency the Ca2+-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T1/2 = 30 min at 37 °C) with a Ki = 28 ± 9 μM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg2+ but unaltered when Ca2+ was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca2+ occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La3+ with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca2+ at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca2+ promoted by the plasma membrane Ca2+-ATPase goes through an enzymatic phospho-intermediate that maintains Ca2+ ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.  相似文献   

6.
The GroEL/GroES protein folding chamber is formed and dissociated by ATP binding and hydrolysis. ATP hydrolysis in the GroES-bound (cis) ring gates entry of ATP into the opposite unoccupied trans ring, which allosterically ejects cis ligands. While earlier studies suggested that hydrolysis of cis ATP is the rate-limiting step of the cycle (t½ ∼ 10 s), a recent study suggested that ADP release from the cis ring may be rate-limiting (t½ ∼ 15-20 s). Here we have measured ADP release using a coupled enzyme assay and observed a t½ for release of ?4-5 s, indicating that this is not the rate-limiting step of the reaction cycle.  相似文献   

7.
Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O2•−) not through its dismutation, but via reduction to hydrogen peroxide (H2O2) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SORGi) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (Tfinal) with Fe3+ ligated to glutamate or hydroxide depending on pH (apparent pKa = 8.7). Although showing negligible SOD activity, reduced SORGi reacts with O2•− with a pH-independent second-order rate constant k1 = 1.0 × 109 M− 1 s− 1 and yields the ferric-(hydro)peroxo intermediate T1; this in turn rapidly decays to the Tfinal state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SORGi is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.  相似文献   

8.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

9.

Background

The concentration of extracellular nucleotides is regulated by enzymes that have their catalytic site facing the extracellular space, the so-called ecto-enzymes.

Methods

We used LLC-PK1 cells, a well-characterized porcine renal proximal tubule cell line, to biochemically characterize ecto-ATPase activity in the luminal surface. The [γ-32P]Pi released after reaction was measured in aliquots of the supernatant by liquid scintillation.

Results

This activity was linear with time up to 20 min of reaction and stimulated by divalent metals. The ecto-ATPase activity measured in the presence of 5 mM MgCl2 was (1) optimum at pH 8, (2) insensitive to different inhibitors of intracellular ATPases, (3) inhibited by 1 mM suramin, an inhibitor of ecto-ATPases, (4) sensitive to high concentrations of sodium azide (NaN3) and (5) also able to hydrolyze ADP in the extracellular medium. The ATP:ADP hydrolysis ratio calculated was 4:1. The ecto-ADPase activity was also inhibited by suramin and NaN3. The dose–response of ATP revealed a hyperbolic profile with maximal velocity of 25.2 ± 1.2 nmol Pi x mg− 1 x min− 1 and K0.5 of 0.07 ± 0.01 mM. When cells were submitted to ischemia, the E-NTPDase activity was reduced with time, achieving 71% inhibition at 60 min of ischemia.

Conclusion

Our results suggest that the ecto-ATPase activity of LLC-PK1 cells has the characteristics of a type 3 E-NTPDase which is inhibited by ischemia.

General Significance

This could represent an important pathophysiologic mechanism that explains the increase in ATP concentration in the extracellular milieu in the proximal tubule during ischemia.  相似文献   

10.
We determined the kinetics of the reaction of human neuronal enolase and yeast enolase 1 with the slowly-reacting chromophoric substrate d-tartronate semialdehyde phosphate (TSP), each in tris (tris (hydroxymethyl) aminomethane) and another buffer at several Mg2+ concentrations, 50 or 100 μM, 1 mM and 30 mM. All data were biphasic, and could be satisfactorily fit, assuming either two successive first-order reactions or two independent first-order reactions. Higher Mg2+ concentrations reduce the relative magnitude of the slower reaction. The results are interpreted in terms of a catalytically significant interaction between the two subunits of these enzymes.  相似文献   

11.
The N-terminal segment of the Semliki Forest virus polyprotein is an intramolecular serine protease that cleaves itself off after the invariant Trp267 from a viral polyprotein and generates the mature capsid protein. After this autoproteolytic cleavage, the free carboxylic group of Trp267 interacts with the catalytic triad (His145, Asp167 and Ser219) and inactivates the enzyme. We have deleted the last 1-7 C-terminal residues of the mature capsid protease to investigate whether removal of Trp267 regenerates enzymatic activity. Although the C-terminally truncated polypeptides do not adopt a defined three-dimensional structure and show biophysical properties observed in natively unfolded proteins, they efficiently catalyse the hydrolysis of aromatic amino acid esters, with higher catalytic efficiency for tryptophan compared to tyrosine esters and kcat/KM values up to 5 × 105 s−1 M−1. The enzymatic mechanism of these deletion variants is typical of serine proteases. The pH enzyme activity profile shows a pKa1 = 6.9, and the Ser219Ala substitution destroys the enzymatic activity. In addition, the fast release of the first product of the enzymatic reaction is followed by a steady-state second phase, indicative of formation and breakdown of a covalent acyl-enzyme intermediate. The rates of acylation and deacylation are k2 = 4.4±0.6 s−1 and k3 = 1.6±0.5 s−1, respectively, for a tyrosine derivative ester substrate, and the amplitude of the burst phase indicates that 95% of the enzyme molecules are active. In summary, our data provide further evidence for the potential catalytic activity of natively unfolded proteins, and provide the basis for engineering of alphavirus capsid proteins towards hydrolytic enzymes with novel specificities.  相似文献   

12.
The rate of conversion of 1 to N-(2-methoxyphenyl)phthalimide (2) within [HCl] range 5.0 × 10−3-1.0 M at 1.0 M ionic strength (by NaCl) reveals the presence of both uncatalyzed and specific acid-catalyzed kinetic terms in the rate law. Intramolecular carboxamide group-assisted cleavage of amide bond of 1 reveals rate enhancement of much larger than 106-fold compared to the expected rate of analogous intermolecular reaction.  相似文献   

13.
The reaction center-light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides has been studied with respect to the kinetics of charge recombination and to the phospholipid and ubiquinone (UQ) complements tightly associated with it. In the antenna-RC complexes, at 6.5 < pH < 9.0, P+QB recombines with a pH independent average rate constant <k> more than three times smaller than that measured in LH1-deprived RCs. At increasing pH values, for which <k> increases, the deceleration observed in RC-LH1 complexes is reduced, vanishing at pH > 11.0. In both systems kinetics are described by a continuous rate distribution, which broadens at pH > 9.5, revealing a strong kinetic heterogeneity, more pronounced in the RC-LH1 complex. In the presence of the antenna the QAQB state is stabilized by about 40 meV at 6.5 < pH < 9.0, while it is destabilized at pH > 11. The phospholipid/RC and UQ/RC ratios have been compared in chromatophore membranes, in RC-LH1 complexes and in the isolated peripheral antenna (LH2). The UQ concentration in the lipid phase of the RC-LH1 complexes is about one order of magnitude larger than the average concentration in chromatophores and in LH2 complexes. Following detergent washing RC-LH1 complexes retain 80-90 phospholipid and 10-15 ubiquinone molecules per monomer. The fractional composition of the lipid domain tightly bound to the RC-LH1 (determined by TLC and 31P-NMR) differs markedly from that of chromatophores and of the peripheral antenna. The content of cardiolipin, close to 10% weight in chromatophores and LH2 complexes, becomes dominant in the RC-LH1 complexes. We propose that the quinone and cardiolipin confinement observed in core complexes reflects the in vivo heterogeneous distributions of these components. Stabilization of the charge separated state in the RC-LH1 complexes is tentatively ascribed to local electrostatic perturbations due to cardiolipin.  相似文献   

14.
The squid Watasenia scintillans emits blue light from numerous photophores. According to Tsuji [F.I. Tsuji, Bioluminescence reaction catalyzed by membrane-bound luciferase in the “firefly squid”, Watasenia scintillans, Biochim. Biophys. Acta 1564 (2002) 189–197.], the luminescence from arm light organs is caused by an ATP-dependent reaction involving Mg2+, coelenterazine disulfate (luciferin), and an unstable membrane-bound luciferase. We stabilized and partially purified the luciferase in the presence of high concentrations of sucrose, and obtained it as particulates (average size 0.6–2 µm). The ATP-dependent luminescence reaction of coelenterazine disulfate catalyzed by the particulate luciferase was investigated in detail. Optimum temperature of the luminescence reaction is about 5 °C. Coelenterazine disulfate is a strictly specific substrate in this luminescence system; any modification of its structure resulted in a very heavy loss in its light emission capability. The light emitter is the excited state of the amide anion form of coelenteramide disulfate. The quantum yield of coelenterazine disulfate is calculated at 0.36. ATP could be replaced by ATP-γ-S, but not by any other analogues tested. The amount of AMP produced in the luminescence reaction was much smaller than that of coelenteramide disulfate, suggesting that the reaction mechanism of the Watasenia bioluminescence does not involve the formation of adenyl luciferin as an intermediate.  相似文献   

15.
A cDNA encoding a homolog of mammalian serine racemase, a unique enzyme in eukaryotes, was isolated from Arabidopsis thaliana and expressed in Escherichia coli cells. The gene product, of which the amino acid residues for binding pyridoxal 5'-phosphate (PLP) are conserved in this as well as mammalian serine racemases, catalyzes not only serine racemization but also dehydration of serine to pyruvate. The enzyme is a homodimer and requires PLP and divalent cations, Ca2+, Mg2+, Mn2+, Fe2+, or Ni2+, at alkaline pH for both activities. The racemization process is highly specific toward L-serine, whereas L-alanine, L-arginine, and L-glutamine were poor substrates. The Vmax/Km values for racemase activity of L- and D-serine are 2.0 and 1.4 nmol/mg/min/mM, respectively, and those values for L- and D-serine on dehydratase activity are 13 and 5.3 nmol/mg/min/mM, i.e. consistent with the theory of racemization reaction and the specificity of dehydration toward L-serine. Hybridization analysis showed that the serine racemase gene was expressed in various organs of A. thaliana.  相似文献   

16.
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (− 1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol L− 1) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol L− 1). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl, SO42−) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol L− 1) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol L− 1). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, − 1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats s− 1 at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.  相似文献   

17.
10-(Octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC) is an alkylphospholipid that can interact with cell membranes because of its amphiphilic character. We describe here the interaction of ODPC with liposomes and its toxicity to leukemic cells with an ED-50 of 5.4, 5.6 and 2.9 μM for 72 h of treatment for inhibition of proliferation of NB4, U937 and K562 cell lines, respectively, and lack of toxicity to normal hematopoietic progenitor cells at concentrations up to 25 μM. The ED-50 for the non-malignant HEK-293 and primary human umbilical vein endothelial cells (HUVEC) was 63.4 and 60.7 μM, respectively. The critical micellar concentration (CMC) of ODPC was 200 μM. Dynamic light scattering indicated that dipalmitoylphosphatidylcholine (DPPC) liposome size was affected only above the CMC of ODPC. Differential calorimetric scanning (DCS) of liposomes indicated a critical transition temperature (Tc) of 41.5 °C and an enthalpy (?H) variation of 7.3 kcal mol1. The presence of 25 μM ODPC decreased Tc and ?H to 39.3 °C and 4.7 kcal mol1, respectively. ODPC at 250 μM destabilized the liposomes (36.3 °C, 0.46 kcal mol1). Kinetics of 5(6)-carboxyfluorescein (CF) leakage from different liposome systems indicated that the rate and extent of CF release depended on liposome composition and ODPC concentration and that above the CMC it was instantaneous. Overall, the data indicate that ODPC acts on in vitro membrane systems and leukemia cell lines at concentrations below its CMC, suggesting that it does not act as a detergent and that this effect is dependent on membrane composition.  相似文献   

18.
Protein aggregates are usually formed by interactions between unfolded or partially unfolded species, and often occur when a protein is denatured by, for example, heat or low pH. In earlier work, we used a Darwinian selection strategy to create human antibody variable domains that resisted heat aggregation. The repertoires of domains were displayed on filamentous phage and denatured (at 80 °C in pH 7.4), and folded domains were selected by binding to a generic ligand after cooling. This process appeared to select for domains with denatured states that resisted aggregation, but the domains only had low free energies of folding (ΔGN-Do = 15-20 kJ/mol at 25 °C in pH 7.4). Here, using the same phage repertoire, we have extended the method to the selection of domains resistant to acid aggregation. In this case, however, the thermodynamic stabilities of selected domains were higher than those selected by thermal denaturation (under both neutral and acidic conditions; ΔGN-Do = 26-47 kJ/mol at 25 °C in pH 7.4, or ΔGN-Do = 27-34 kJ/mol in pH 3.2). Furthermore, we identified a key determinant (Arg28) that increased the aggregation resistance of the denatured states of the domains at low pH without compromising their thermodynamic stabilities. Thus, the selection process yielded domains that combined thermodynamic stability and aggregation-resistant unfolded states. We suggest that changes to these properties are controlled by the extent to which the folding equilibrium is displaced during the process of selection.  相似文献   

19.
Streptomyces coelicolor A3(2) produces several intra and extracellular enzymes with deoxyribonuclease activities. The examined N-terminal amino acid sequence of one of extracellular DNAases (TVTSVNVNGLL) and database search on S. coelicolor genome showed a significant homology to the putative secreted exodeoxyribonuclease. The corresponding gene (exoSc) was amplified, cloned, expressed in Escherichia coli, purified to homogeneity and characterized. Exonuclease recExoSc degraded chromosomal, linear dsDNA with 3′-overhang ends, linear ssDNA and did not digest linear dsDNA with blunt ends, supercoiled plasmid ds nor ssDNA. The substrate specificity of recExoSc was in the order of dsDNA > ssDNA > 3′-dAMP. The purified recExoSc was not a metalloprotein and exhibited neither phosphodiesterase nor RNase activity. It acted as 3′-phosphomonoesterase only at 3′-dAMP as a substrate. The optimal temperature for its activity was 57 °C in Tris–HCl buffer at optimal pH = 7.5 for either ssDNA or dsDNA substrates. It required a divalent cation (Mg2+, Co2+, Ca2+) and its activity was strongly inhibited in the presence of Zn2+, Hg2+, chelating agents or iodoacetate.  相似文献   

20.
A phosphate-hydrolyzing activity from Glycine max embryo axes was purified by a series of chromatographic steps and electroelution from activity gels, and demonstrated to be an inositol-1 (or 4)-monophosphatase by partial internal amino acid sequence. This enzyme hydrolyzed ATP, sodium pyrophosphate (NaPPi), inositol hexakisphosphate, and inositol 1-monophosphate, but not p-nitrophenyl phosphate, ADP, AMP or glucose 6-P. Using NaPPi as substrate, the highly purified protein hydrolyzed up to 0.4 mmol phosphate min− 1 mg− 1 protein and had a Kmavg of 235 μM for NaPPi. Since NaPPi is relatively inexpensive and readily available, we used this as substrate for the subsequent characterization. We observed the following: (a) specific inhibition by Li and NaF but not by butanedione monoxime, or orthovanadate; (b) activation by Cu2+ and Mg2+; (c) optimum activity at pH 7.4; and (d) temperature stability after 1-h incubations at 37–80 °C, with maximum activity at 37 °C. The partially purified protein was detected by in-gel activity assays and the band was electroeluted to yield a highly purified protein. Analysis by SDS-PAGE and native IEF-PAGE yielded a single major polypeptide of 29 kDa and pI ∼ 5.9, respectively. In addition, in-gel activity from embryo axes and whole hypocotyls at early germination times revealed one high and one intermediate molecular weight isoform, but only the intermediate one corresponded to IMPase. Throughout the post-imbibition period, the activity of the high molecular weight isoform disappeared and IMPase increased, indicating an increasing expression of the enzyme as germination and growth proceeded. These data indicate that the inositol-1 (or 4)-monophosphatase present in the embryo axis of G. max has a wide phosphate substrate specificity, and may play an important role in phosphate metabolism during the germination process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号