首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Wen M  Buschhaus C  Jetter R 《Phytochemistry》2006,67(16):1808-1817
Needles of Taxus baccata L. were covered with tubular epicuticular wax crystals varying in diameters (100 and 250 nm) and lengths (300-500 and 500-1000 nm) on the abaxial and adaxial surfaces, respectively. Various sampling protocols were employed to study the chemical composition of the needle waxes on three different levels of spatial resolution. First, a dipping extraction of whole needles yielded the total cuticular wax mixture consisting of very long chain fatty acids (21%), alkanediols (19%), phenyl esters (15%), and secondary alcohols (9%) together with small amounts of aldehydes, primary alcohols, alkanes, alkyl esters, and tocopherols. Second, waxes from both sides of the needle were sampled separately by brushing with CHCl3-soaked fabric glass. Both sides showed very similar qualitative composition, but differed drastically in quantitative aspects, with nonacosan-10-ol (18%) and alkanediols (33%) dominating the abaxial and adaxial waxes, respectively. Third, the epi- and intracuticular wax layers were selectively sampled by a combination of mechanical wax removal and brushing extraction. This provided direct evidence that the tubular wax crystals contained high percentages of nonacosane-4,10-diol and nonacosane-5,10-diol on the abaxial surface, and nonacosan-10-ol on the adaxial surface of the needles. Together with these compounds, relatively large amounts of fatty acids and smaller percentages of aldehydes, primary alcohols, alkyl esters, and alkanes co-crystallized in the epicuticular layer. In comparison, the intracuticular wax consisted of higher portions of cyclic constituents and aliphatics with relatively high polarity. The formation of the tubular crystals is discussed as a spontaneous physico-chemical process, involving the establishment of gradients between the epi- and intracuticular wax layers and local phase separation.  相似文献   

2.
The composition of the epicuticular waxes from the adaxial and abaxial surfaces of peach leaves varies considerably during one season's growth. Triterpenoid acids are major components 84–95% of the waxes from the youngest leaves but the proportions of these constituents decrease as the leaves expand. The waxes from the abaxial surfaces of fully expanded leaves consist primarily of hydrocarbons (C22–C34) and triterpenoid acids, whereas the adaxial surface waxes also contain large proportions of primary alcohols (C26-C34) and esters (C42-C52). The latter include sitosteryl esters of hexacosanoic, octacosanoic and eicosanoic acids. Variations were also noted between fully expanded leaves of different ages, the abaxial surface waxes of the oldest leaves containing the highest proportions of hydrocarbons, whilst the wax from the adaxial surface of the corresponding leaves contained the largest amounts of esters, sitosterol and hydrocarbons.  相似文献   

3.
Previous research has shown that cuticular triterpenoids are exclusively found in the intracuticular wax layer of Prunus laurocerasus. To investigate whether this partitioning was species-specific, the intra- and epicuticular waxes were identified and quantified for the glossy leaves of Ligustrum vulgare, an unrelated shrub with similar wax morphology. Epicuticular wax was mechanically stripped from the adaxial leaf surface using the adhesive gum arabic. Subsequently, the organic solvent chloroform was used to extract the intracuticular wax from within the cutin matrix. The isolated waxes were quantified using gas chromatography with flame ionization detection and identified by mass spectrometry. The results were visually confirmed by scanning electron microscopy. The outer wax layer consisted entirely of homologous series of very-long-chain aliphatic compound classes. By contrast, the inner wax layer was dominated (80%) by two cyclic triterpenoids, ursolic and oleanolic acid. The accumulation of triterpenoids in the intracuticular leaf wax of a second, unrelated species suggests that this localization may be a more general phenomenon in smooth cuticles lacking epicuticular wax crystals. The mechanism and possible ecological or physiological reasons for this separation are currently being investigated.  相似文献   

4.
Buschhaus C  Herz H  Jetter R 《Annals of botany》2007,100(7):1557-1564
BACKGROUND AND AIMS: The waxy cuticle is the first point of contact for many herbivorous and pathogenic organisms on rose plants. Previous studies have reported the average composition of the combined wax extract from both sides of rose leaves. Recently, the compositions of the waxes on the adaxial and abaxial surfaces of Rosa canina leaves were determined separately. In this paper, a first report is made on the compositions of the epicuticular and intracuticular wax layers of Rosa canina leaves. The methods described enable the determination of which compounds are truly available at the surface for plant-organism interactions. METHODS: An adhesive was used to mechanically strip the epicuticular wax from the adaxial leaf surface and the removal was visually confirmed using scanning electron microscopy. After the epicuticular wax had been removed, the intracuticular wax was then isolated using standard chemical extraction. Gas chromatography, flame ionization detection and mass spectrometry were used to identify and quantify compounds in the separated wax mixtures. KEY RESULTS: The epicuticular wax contained higher concentrations of alkanes and alkyl esters but lower concentrations of primary alcohols and alkenols when compared to the intracuticular wax. In addition, the average chain lengths of these compound classes were higher in the epicuticular wax. Secondary alcohols were found only in the epicuticular layer while triterpenoids were restricted mainly to the intracuticular wax. CONCLUSIONS: A gradient exists between the composition of the epi- and intracuticular wax layers of Rosa canina leaves. This gradient may result from polarity differences, in part caused by differences in chain lengths. The outer wax layer accessible to the phyllosphere showed a unique composition of wax compounds. The ecological consequences from such a gradient may now be probed.  相似文献   

5.
Ji X  Jetter R 《Phytochemistry》2008,69(5):1197-1207
Alkylresorcinols (ARs) are bioactive compounds occurring in many members of the Poaceae, likely at or near the surface of various organs. Here, we investigated AR localization within the cuticular wax layers of rye (Secale cereale) leaves. The total wax mixture from both sides of the leaves was found to contain primary alcohols (71%), alkyl esters (11%), aldehydes (5%), and small amounts (<3%) of alkanes, steroids, secondary alcohols, fatty acids and unknowns. A homologous series of ARs (3%) was identified by GC-MS and comparison with a synthetic standard of nonadecylresorcinol. The alkyl side chains of the wax ARs contained odd numbers of carbons ranging from C19 to C27, with a prevalence of C21, C23 and C25. Waxes from both sides of the leaf, analyzed separately in a second experiment, comprised the same compound classes in similar relative amounts and with similar homolog patterns. Finally, the epicuticular and intracuticular wax layers were sampled separately from the abaxial side of the leaf. While ARs accounted for 2% of the intracuticular wax, they were not detectable in the epicuticular wax. The intracuticular wax was also slightly enriched in steroids, whereas the epicuticular layer contained more primary alcohols. All other wax constituents were distributed evenly between both wax layers.  相似文献   

6.
Plant surface characteristics were repeatedly shown to play a pivotal role in plant–pathogen interactions. The abaxial leaf surface of perennial ryegrass (Lolium perenne) is extremely glossy and wettable compared to the glaucous and more hydrophobic adaxial surface. Earlier investigations have demonstrated that the abaxial leaf surface was rarely infected by powdery mildew (Blumeria graminis), even when the adaxial surface was densely colonized. This led to the assumption that components of the abaxial epicuticular leaf wax might contribute to the observed impairment of growth and development of B. graminis conidia on abaxial surfaces of L. perenne. To re-assess this hypothesis, we analyzed abundance and chemical composition of L. perenne ab- and adaxial epicuticular wax fractions. While the adaxial epicuticular waxes were dominated by primary alcohols and esters, the abaxial fraction was mainly composed of n-alkanes and aldehydes. However, the major germination and differentiation inducing compound, the C26-aldehyde n-hexacosanal, was not present in the abaxial epicuticular waxes. Spiking of isolated abaxial epicuticular Lolium waxes with synthetically produced n-hexacosanal allowed reconstituting germination and differentiation rates of B. graminis in an in vitro germination assay using wax-coated glass slides. Hence, the absence of the C26-aldehyde from the abaxial surface in combination with a distinctly reduced surface hydrophobicity appears to be primarily responsible for the failure of normal germling development of B. graminis on the abaxial leaf surfaces of L. perenne.  相似文献   

7.
The epicuticular wax covering on plant surface plays important roles in protecting plants against UV radiation. However, the role of epicuticular wax in affecting leaf gas exchange under enhanced ultraviolet-B (UV-B) radiation remains obscure. In the present study, different aged leaves of Brassica napus were used to analyze the responses of crystal structure and chemical constituents of epicuticular wax to UV-B radiation and the effects of such responses on gas exchange indices. Enhanced UV-B radiation significantly decreased the amount of esters in all leaves except the first leaf, amount of secondary alcohols in the second, third and fourth leaves, and amount of primary alcohols in the second and third leaves, while increased the amounts of ketones and aldehydes in the first leaf. Enhanced UV-B level had no significant effect on the amounts of alkanes and total wax in all leaves. Exposure to UV-B radiation resulted in wax fusion on adaxial leaf and stomata opening on abaxial leaf. Fusions of plates and rods on adaxial leaf surface covered most of the stomata, thereby influencing the photosynthesis in the upper mesophyll of leaves. Enhanced UV-B level significantly reduced the net photosynthesis rate (P N) but increased the stomata conductance (g s), concentrations of intercellular CO2 (C i ), and transpiration rate (E) in all leaves. Both UV-B radiation and the wax fusion induced by enhanced UV-B radiation resulted in different stomata status on abaxial and adaxial leaf surface, causing decrease of P N, and increase of g s, C i and E in leaves.  相似文献   

8.
Riedel M  Eichner A  Meimberg H  Jetter R 《Planta》2007,225(6):1517-1534
Plants of the carnivorous genus Nepenthes efficiently trap insects in leaf pitchers, mostly employing epicuticular wax crystals on the pitcher walls to make them slippery for the prey. In the present study, the compositions and micromorphologies of the wax crystals of five Nepenthes species and hybrids were analysed in order to test whether the chemical principles underlying this ecological function are widespread within the genus. Three wax layers could be distinguished within the Nepenthes pitcher cuticles: (1) the outermost part of the crystals forming the platelets visible in standard scanning electron microscopy, (2) the bottom portion of the epicuticular wax crystals, and (3) an intracuticular wax layer. The composition of the intracuticular wax differed significantly from that of the neighbouring epicuticular layer. The compositions of corresponding wax mixtures from all five Nepenthes species and hybrids were very similar, with almost equal amounts of very long chain aldehydes and primary alcohols. While triacontanal (C30 aldehyde) was prevailing in the epicuticular crystals of Nepenthes albomarginata and Nepenthes x intermedia, Nepenthes x superba and Nepenthes x henriana were found to have especially high percentages of dotriacontanal (C32 aldehyde). Nepentheskhasiana” had an intermediate aldehyde composition with almost equal amounts of both chain lengths.  相似文献   

9.
Yu MM  Konorov SO  Schulze HG  Blades MW  Turner RF  Jetter R 《Planta》2008,227(4):823-834
The cuticular waxes on the leaves of Prunus laurocerasus are arranged in distinct layers differing in triterpenoid concentrations (Jetter et al., Plant Cell Environ 23:619–628, 2000). In addition to this transversal gradient, the lateral distribution of cuticular triterpenoids must be investigated to fully describe the spatial distribution of wax components on the leaf surfaces. In the present investigation, near infrared (NIR) Raman microspectroscopy, coherent anti-Stokes Raman scattering (CARS) microscopy, and third harmonic generation (THG) spectroscopy were employed to map the triterpenoid distribution in isolated cuticles from adaxial and abaxial sides of P. laurocerasus leaves. The relative concentrations of ursolic acid and oleanolic acid were calculated by treating the cuticle spectra as linear combinations of reference spectra from the major compounds found in the wax. Raman maps of the adaxial cuticle showed that the triterpenoids accumulate to relatively high concentrations over the periclinal regions of the pavement cells, while the very long chain aliphatic wax constituents are distributed fairly evenly across the entire adaxial cuticle. In the analysis of the abaxial cuticles, the triterpenoids were found to accumulate in greater amounts over the guard cells relative to the pavement cells. The very long chain aliphatic compounds accumulated in the cuticle above the anticlinal cell walls of the pavement cells, and were found at low concentrations above the periclinals and the guard cells.  相似文献   

10.
In the cuticular wax mixtures from leaves of pea (Pisum sativum) cv Avanta, cv Lincoln, and cv Maiperle, more than 70 individual compounds were identified. The adaxial wax was characterized by very high amounts of primary alcohols (71%), while the abaxial wax consisted mainly of alkanes (73%). An aqueous adhesive of gum arabic was employed to selectively sample the epicuticular wax layer on pea leaves and hence to analyze the composition of epicuticular crystals exposed at the outermost surface of leaves. The epicuticular layer was found to contain 74% and 83% of the total wax on adaxial and abaxial surfaces, respectively. The platelet-shaped crystals on the adaxial leaf surface consisted of a mixture dominated by hexacosanol, accompanied by substantial amounts of octacosanol and hentriacontane. In contrast, the ribbon-shaped wax crystals on the abaxial surface consisted mainly of hentriacontane (63%), with approximately 5% each of hexacosanol and octacosanol being present. Based on this detailed chemical analysis of the wax exposed at the leaf surface, their importance for early events in the interaction with host-specific pathogenic fungi can now be evaluated. On adaxial surfaces, approximately 80% of Erysiphe pisi spores germinated and 70% differentiated appressoria. In contrast, significantly lower germination efficiencies (57%) and appressoria formation rates (49%) were found for abaxial surfaces. In conclusion, the influence of the physical structure and the chemical composition of the host surface, and especially of epicuticular leaf waxes, on the prepenetration processes of biotrophic fungi is discussed.  相似文献   

11.
Jetter R  Schäffer S 《Plant physiology》2001,126(4):1725-1737
The seasonal development of adaxial Prunus laurocerasus leaf surfaces was studied using newly developed methods for the mechanical removal of epicuticular waxes. During epidermal cell expansion, more than 50 microg leaf(-1) of alkyl acetates accumulated within 10 d, forming an epicuticular wax film approximately 30 nm thick. Then, alcohols dominated for 18 d of leaf development, before alkanes accumulated in an epicuticular wax film with steadily increasing thickness (approximately 60 nm after 60 d), accompanied by small amounts of fatty acids, aldehydes, and alkyl esters. In contrast, the intracuticular waxes stayed fairly constant during development, being dominated by triterpenoids that could not be detected in the epicuticular waxes. The accumulation rates of all cuticular components are indicative for spontaneous segregation of intra- and epicuticular fractions during diffusional transport within the cuticle. This is the first report quantifying the loss of individual compound classes (acetates and alcohols) from the epicuticular wax mixture. Experiments with isolated epicuticular films showed that neither chemical conversion within the epicuticular film nor erosion/evaporation of wax constituents could account for this effect. Instead, transport of epicuticular compounds back into the tissue seems likely. Possible ecological and physiological functions of the coordinate changes in the composition of the plant surface layers are discussed.  相似文献   

12.
The goal of the present study was to monitor cuticular wax accumulation during leaf development of Kalanchoe daigremontiana . Leaves expanded linearly until they were 40–60 d old. Wax coverages of leaves on the third node increased steadily during initial leaf development, from 6.5  µ g·cm−2 on day 22 to 15.3  µ g·cm−2 on day 53, and then levelled off. Triterpenoids dominated the wax mixture throughout leaf development, but decreased from 74 to 40–45% in mature leaves, while very long-chain fatty acid (VLCFA) derivatives increased from 19 to 39–44%. The major VLCFA derivatives were alkanes, accompanied by fatty acids, primary alcohols, aldehydes and alkyl esters. In all compound classes, either C34 or C33 homologs predominated during leaf development. Eight different triterpenoids were identified, with glutinol constituting 70% of the fraction, and friedelin (20%) and germanicol (10%) as further major components of the young leaf wax. The glutinol percentage decreased, while the relative amounts of epifriedelanol and glutanol increased during development. Various leaf pairs upwards from the third node showed similar growth patterns and developmental time courses of cuticular wax amounts and composition. Based on these surface chemical analyses, the relative activities of biosynthetic pathways leading to various wax components can be assessed.  相似文献   

13.
Relationships between leaf wettability and surface physicochemicalcharacteristics were examined in two genotypes of tobacco (Nicotianatabacum L. cv. Samsun) grown under controlled conditions atthree different levels of biologically effective ultraviolet-B(UV-BBE; 280–320 nm) radiation; 0 (control), 4.54 and5.66 kJ m–2d–1. Leaf wettability, assessed by measuringleaf-water droplet contact angles, was positively correlatedwith epicuticular wax chemical composition and trichome density,but not the amount of wax on the surface of leaves. Tobaccowax comprised a mixture of C19–C33 n-alkanes (59%) withhomologues containing an odd number of carbon atoms predominating,C28–C32 br-alkanes (38%), and a small quantity (3%) offree Cl6–C18 fatty acids. Significant effects of UV-Bradiation upon wax production and chemical composition wererestricted to the adaxial surface of leaves. Enhanced UV-B radiationreduced the quantity of epicuticular wax in the more sensitivegenotype [GR32-3], assessed from effects on dry matter accumulation,partitioning and changes in leaf morphology, and resulted inmarked changes in wax composition and homologue distributionsin both genotypes. UV-B-induced increases in branching, andshifts toward the synthesis of shorter-chain homologues providedevidence for a fundamental effect of UV-B radiation on wax biosynthesis,with the observed effects consistent with a highly specificand direct effect of UV-B radiation on microsomal-based elongasesin the epidermis. UV-B radiation also reduced the density oftrichomes on the adaxial leaf surface, whilst increasing thenumber of trichomes on the abaxial leaf surface. Changes inwax composition and trichome density induced by UV-B radiationwere associated with increases in leaf surface wettability whichwere particularly pronounced on the adaxial surface. The subtle,though possibly far-reaching, physiological consequences ofsuch UV-B-induced changes in surface wettability are discussedin the light of other recent findings. Key words: Epicuticular wax chemistry, wax quantity, leaf wettability, trichome density, ultraviolet-B radiation  相似文献   

14.
Cuticular waxes play a pivotal role in limiting transpirational water loss across the plant surface. The correlation between the chemical composition of the cuticular waxes and their function as a transpiration barrier is still unclear. In the present study, intact tomato fruits (Lycopersicon esculentum) are used, due to their astomatous surface, as a novel integrative approach to investigate this composition- function relationship: wax amounts and compositions of tomato were manipulated before measuring unbiased cuticular transpiration. First, successive mechanical and extractive wax-removal steps allowed the selective modification of epi- and intracuticular wax layers. The epicuticular film consisted exclusively of very-long-chain aliphatics, while the intracuticular compartment contained large quantities of pentacyclic triterpenoids as well. Second, applying reverse genetic techniques, a loss-of-function mutation with a transposon insertion in a very-long-chain fatty acid elongase beta-ketoacyl-CoA synthase was isolated and characterized. Mutant leaf and fruit waxes were deficient in n-alkanes and aldehydes with chain lengths beyond C30, while shorter chains and branched hydrocarbons were not affected. The mutant fruit wax also showed a significant increase in intracuticular triterpenoids. Removal of the epicuticular wax layer, accounting for one-third of the total wax coverage on wild-type fruits, had only moderate effects on transpiration. By contrast, reduction of the intracuticular aliphatics in the mutant to approximately 50% caused a 4-fold increase in permeability. Hence, the main portion of the transpiration barrier is located in the intracuticular wax layer, largely determined by the aliphatic constituents, but modified by the presence of triterpenoids, whereas epicuticular aliphatics play a minor role.  相似文献   

15.
The protective wax coating on plant surfaces has long been considered to be non-uniform in composition at a subcellular scale. In recent years, direct evidence has started to accumulate showing quantitative compositional differences between the epicuticular wax (i.e. wax exterior to cutin that can be mechanically peeled off) and intracuticular wax (i.e. wax residing within the mechanically resistant layer of cutin) layers in particular. This review provides a first synthesis of the results acquired for all the species investigated to date in order to assign chemical information directly to cuticle substructures, together with an overview of the methods used and a discussion of possible mechanisms and biological functions. The development of methods to probe the wax for z-direction heterogeneity began with differential solvent extractions. Further research employing mechanical wax removal by adhesives permitted the separation and analysis of the epicuticular and intracuticular wax. In wild-type plants, the intracuticular (1-30 μg cm(-2)) plus the epicuticular wax (5-30 μg cm(-2)) combined to a total of 8-40 μg cm(-2). Cyclic wax constituents, such as triterpenoids and alkylresorcinols, preferentially or entirely accumulate within the intracuticular layer. Within the very-long-chain aliphatic wax components, primary alcohols tend to accumulate to higher percentages in the intracuticular wax layer, while free fatty acids and alkanes in many cases accumulate in the epicuticular layer. Compounds with different chain lengths are typically distributed evenly between the layers. The mechanism causing the fractionation remains to be elucidated but it seems plausible that it involves, at least in part, spontaneous partitioning due to the physico-chemical properties of the wax compounds and interactions with the intracuticular polymers. The arrangement of compounds probably directly influences cuticular functions.  相似文献   

16.
《Flora》2014,209(5-6):215-232
The cuticle, forming the outermost layer of plant tissues and being in direct contact with the environment, consists of waxes and cutin. Waxes are hydrophobic substances that are divided in two groups: intra- and epicuticular, depending on their localisation. Epicuticular waxes appear as smooth coverings, however, many plants also produce superimposed wax structures of a crystalline nature. While studies of waxes have almost exclusively focused on leaves, here a survey of epicuticular wax structures on stems is presented. The stem surface of 343 higher plant taxa, representing 80 families, was examined using scanning electron microscopy. The adaxial and abaxial surfaces of leaves of 319 taxa were also examined to determine the relationship between wax structures on stems and leaves. Wax structures are classified, described and discussed. The results of the study indicate that stems exhibit the same main wax crystal types that have been described for leaves. Seventy percent of the examined taxa produced wax crystals on their stems. In ∼24% of the taxa, wax crystals were absent on leaves and found only on stems. In plant taxa that produce wax crystals, 40% exhibit the same type on either side of their leaves and on their stem. However, a much stronger morphological similarity exists between crystal shapes present on the adaxial and abaxial surfaces of leaves than between those present on the stem and those on leaves. In general, these observations suggest that stems are quite different than leaves in terms of their epicuticular wax structures.  相似文献   

17.
The composition and spatial arrangement of cuticular waxes on the leaves of Prunus laurocerasus were investigated. In the wax mixture, the triterpenoids ursolic acid and oleanolic acid as well as alkanes, fatty acids, aldehydes, primary alcohols and alcohol acetates were identified. The surface extraction of upper and lower leaf surfaces yielded 280 mg m ? 2 and 830 mg m ? 2, respectively. Protocols for the mechanical removal of waxes from the outermost layers of the cuticle were devised and evaluated. With the most selective of these methods, 130 mg m ? 2 of cuticular waxes could be removed from the adaxial surface before a sharp, physically resistant boundary was reached. Compounds thus obtained are interpreted as ‘epicuticular waxes’ with respect to their localization in a distinct layer on the surface of the cutin matrix. The epicuticular wax film can be transferred onto glass and visualized by scanning electron microscopy. Prunus laurocerasus epicuticular waxes consisted entirely of aliphatic compounds, whereas the remaining intracuticular waxes comprised 63% of triterpenoids. The ecological relevance of this layered structure for recognition by phytotrophic fungi and herbivorous insects that probe the surface composition for sign stimuli is discussed.  相似文献   

18.
Plant cuticular waxes play a crucial role in limiting nonstomatal water loss. The goal of this study was to localize the transpiration barrier within the layered structure of cuticles of eight selected plant species and to put its physiological function into context with the chemical composition of the intracuticular and epicuticular wax layers. Four plant species (Tetrastigma voinierianum, Oreopanax guatemalensis, Monstera deliciosa, and Schefflera elegantissima) contained only very-long-chain fatty acid (VLCFA) derivatives such as alcohols, alkyl esters, aldehydes, and alkanes in their waxes. Even though the epicuticular and intracuticular waxes of these species had very similar compositions, only the intracuticular wax was important for the transpiration barrier. In contrast, four other species (Citrus aurantium, Euonymus japonica, Clusia flava, and Garcinia spicata) had waxes containing VLCFA derivatives, together with high percentages of alicyclic compounds (triterpenoids, steroids, or tocopherols) largely restricted to the intracuticular wax layer. In these species, both the epicuticular and intracuticular waxes contributed equally to the cuticular transpiration barrier. We conclude that the cuticular transpiration barrier is primarily formed by the intracuticular wax but that the epicuticular wax layer may also contribute to it, depending on species-specific cuticle composition. The barrier is associated mainly with VLCFA derivatives and less (if at all) with alicyclic wax constituents. The sealing properties of the epicuticular and intracuticular layers were not correlated with other characteristics, such as the absolute wax amounts and thicknesses of these layers.The plant cuticle is one of the major adaptations of vascular plants for life in the atmospheric environment. Accordingly, the primary function of cuticles is to limit nonstomatal water loss and, thus, to protect plants against drought stress (Burghardt and Riederer, 2006). However, plant cuticles also play roles in minimizing the adhesion of dust, pollen, and spores (Barthlott and Neinhuis, 1997), protecting tissues from UV radiation (Krauss et al., 1997; Solovchenko and Merzlyak, 2003), mediating biotic interactions with microbes (Carver and Gurr, 2006; Leveau, 2006; Hansjakob et al., 2010, 2011; Reisberg et al., 2012) as well as insects (Eigenbrode and Espelie, 1995; Müller and Riederer, 2005), and preventing deleterious fusions between different plant organs (Tanaka and Machida, 2013).Cuticles are composite (nonbilayer) membranes consisting of an insoluble polymer matrix and solvent-soluble waxes. The polymer matrix (MX) is mainly made of the hydroxy fatty acid polyester cutin (Nawrath, 2006) and also contains polysaccharides and proteins (Heredia, 2003). In contrast, cuticular waxes are complex mixtures of aliphatic compounds derived from very-long-chain fatty acids (VLCFAs) with hydrocarbon chains of C20 and more (Jetter et al., 2007). Wax quantities and compositions vary greatly between plant species and, in many cases, even between organs and developmental stages. Diverse VLCFA derivatives can be present, including free fatty acids, aldehydes, ketones, primary and secondary alcohols, alkanes, and alkyl esters. Besides, the cuticular waxes of many plant species also contain cyclic compounds such as triterpenoids and aromatics.In order to characterize the physiological function of cuticular waxes, methods have been developed for the isolation of astomatous cuticles and the measurement of transpiration rates under exactly controlled conditions, so that well-defined physical transport parameters such as permeances and resistances can be determined and compared across species and organs (Schönherr and Lendzian, 1981; Kerstiens, 1996; Riederer and Schreiber, 2001; Lendzian, 2006). With these methods, it was demonstrated that the cuticular water permeance increases by up to 3 orders of magnitude upon wax removal, thus showing the central role of waxes as a transpiration barrier (Schönherr, 1976). Permeances for water determined so far with astomatous isolated leaf cuticular membranes (CMs) or in situ leaf cuticles range over 2.5 orders of magnitude, from 3.63 × 10−7 m s−1 (Vanilla planifolia) to 7.7 × 10−5 m s−1 (Maianthemum bifolium; Riederer and Schreiber, 2001).The species-dependent differences of both wax composition and permeance led to a search for correlations between cuticle structure and function. If such a structure-function relationship could be established, then it would become possible to select or alter wax composition in order to improve cuticle performance in crop species (Kosma and Jenks, 2007). However, all attempts to understand cuticle permeance based on cuticle composition have failed so far: correlations between wax amounts and permeances could not be established, contrary to the common assumption that thicker wax layers must provide better protection against desiccation (Schreiber and Riederer, 1996; Riederer and Schreiber, 2001). Similarly, a correlation between wax quality (i.e. the relative portions of its constituents) and permeance could also not be established to date (Burghardt and Riederer, 2006). It is not clear how certain wax components contribute to the vital barrier function of the cuticle.Previous attempts to establish wax structure-function relationships may have failed because only bulk wax properties were studied and important effects of substructures were averaged out. However, distinct compartments of wax exist within the cuticle, most prominently as a layer of intracuticular wax embedded within the MX and a layer of epicuticular wax deposited on the outer surface of the polymer (Jeffree, 2006). Over the last years, methods have been developed that allow the selective removal of epicuticular wax by adhesive surface stripping, followed by equally selective extraction of intracuticular wax (Jetter et al., 2000; Jetter and Schäffer, 2001). Chemical analyses showed that, for most plant species investigated to date, both wax layers have distinct compositions (Buschhaus and Jetter, 2011). The most pronounced differences between the layers were found for the triterpenoids, which were localized predominantly (or even exclusively) in the intracuticular wax. These findings raised the possibility that the chemically distinct wax layers might also have distinct functions, leading back to the long-standing question of whether the water barrier function is exerted by the intracuticular and/or the epicuticular wax. There are only scant data to answer this question so far, mainly because methods allowing a distinction between epicuticular and intracuticular waxes were established only recently. Using these sampling techniques, it was recently found that, for leaves of Prunus laurocerasus, the epicuticular wax layer does not contribute to the transpiration barrier (Zeisler and Schreiber, 2016). In contrast, it had been reported that removal of the epicuticular wax layer from tomato (Solanum lycopersicum) fruit caused an approximately 2-fold increase in transpiration, suggesting that, in this species, the epicuticular layer constitutes an important part of the barrier (Vogg et al., 2004). Based on these conflicting reports, it is not clear to what extent the intracuticular or the epicuticular waxes contribute to the sealing function of the plant skin.The goal of this study was to localize the transpiration barrier within the cuticular membrane of selected plant species and to put the physiological function into context with the chemical composition of both the epicuticular and intracuticular wax layers. To this end, we selected eight species from which leaf cuticles could be isolated and methods for step-wise wax removal could be applied without damaging the cuticle. Preliminary studies had shown that the adaxial cuticles on leaves of Citrus aurantium (Rutaceae), Euonymus japonica (Celastraceae), Clusia flava (Clusiaceae), Garcinia spicata (Clusiaceae), Tetrastigma voinierianum (Vitaceae), Oreopanax guatemalensis (Araliaceae), Monstera deliciosa (Araceae), and Schefflera elegantissima (Araliaceae) were astomateous and showed wide chemical diversity. Therefore, these eight species were selected to address the following questions: (1) What are the amounts of epicuticular and intracuticular waxes? (2) Do compositional differences exist between the layers? (3) Where are the cuticular triterpenoids located? (4) How much do the epicuticular and intracuticular waxes contribute to the transpiration barrier? (5) Is the barrier associated with certain components of the intracuticular or epicuticular waxes?  相似文献   

19.
Klaus Haas 《Phytochemistry》1982,21(3):657-659
The mosses Andreaea rupestris, Pogonatum aloides and P. urnigerum contain surface waxes in amounts of 0.05–0.12% dry wt. The waxes consisted of esters (C38-C54), primary alcohols (C20-C32), free fatty acids (C16-C30), and alkanes (C21-C31). Additionally, aldehydes (C22-C30) were major constituents in the wax of P. urnigerum. The classes and their chain length distributions in the surface waxes of these mosses are comparable to those of epicuticular waxes of higher plants.  相似文献   

20.
The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C30H50O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761–779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号