首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant P450 monooxygenases represent the largest family of plant proteins and the largest collection of P450s available for comparative studies and biotechnological applications. They have been shown to catalyze a diverse array of difficult chemical reactions and have demonstrated potential to be used in pharmacological, agronomic and phytoremediative applications. Central to our use of these catalytically competent enzymes is the need to understand their interactions with substrates. Because most characterized plant P450s are membrane-bound proteins that are resistant to standard X-ray and NMR structure determinations, homology modeling represents a reliable and relatively rapid alternative method for analyzing structure-function relationships and predicting substrates for many P450s that are only now being characterized. These methods, which are being widely used in mammalian P450 structure-function studies, can allow plant biologists to define critical residues interacting with substrates and, in a directed fashion, alter the reactivities of individual monooxygenases. The homology modelings that have been done on a limited number of plant P450s and the site-directed mutations that validate them indicate that current modeling and substrate docking procedures are capable of providing structural explanations for sequence variants as well as for predicting functional characteristics of undefined P450s.  相似文献   

2.
植物尿苷二磷酸糖基转移酶超家族晶体结构   总被引:2,自引:0,他引:2  
糖基转移酶(Glycosyltransferases,GTs)催化的糖基化反应几乎是植物中最为重要的反应。GTs家族1中的植物UGTs(UDP-dependent glycosyltransferases)成员主要运用尿苷二磷酸活化的糖作为糖基供体,因其成员众多、生物功能多样,仅仅通过序列比较和进化分析不能够精确预测其复杂的底物专一性和特有的催化机制,需要后续生化实验的进一步验证。文中主要总结了目前在蛋白结构数据库(Protein Data Bank,PDB)中报道的5种植物UGTs的晶体三维结构和定点突变功能研究进展。详细介绍了植物UGTs整体结构的特点以及蛋白与底物相互作用的细节,为更有效地生化定性UGTs以便深入理解底物专一性提供了有力的工具,从而为植物UGTs在酶工程和基因工程中的应用奠定基础。  相似文献   

3.
Plant peroxidases are one of the most extensively studied group of enzymes which find applications in the environment, health,pharmaceutical, chemical and biotechnological processes. Class III secretary peroxidase from alfalfa (Medicago sativa) has beencharacterized using bioinformatics approach Physiochemical properties and topology of alfalfa peroxidase were compared withthat of soybean and horseradish peroxidase, two most popular commercially available peroxidase preparations. Lower value ofinstability index as predicted by ProtParam and presence of extra disulphide linkages as predicted by Cys_REC suggested alfalfaperoxidase to be more stable than either of the commercial preparations. Multiple Sequence Alignment (MSA) with otherfunctionally similar proteins revealed the presence of highly conserved catalytic residues. Three dimensional model of alfalfaperoxidase was constructed based on the crystal structure of soybean peroxidase (PDB Id: 1FHF A) by homology modellingapproach. The model was checked for stereo chemical quality by PROCHECH, VERIFY 3D, WHAT IF, ERRAT, 3D MATCH ANDProSA servers. The best model was selected, energy minimized and used to analyze structure function relationship with substratehydrogen peroxide by Autodock 4.0. The enzyme substrate complex was viewed with Swiss PDB viewer and one residue ASP43was found to stabilize the interaction by hydrogen bonds. The results of the study may be a guiding point for further investigationson alfalfa peroxidase.  相似文献   

4.
d-Mandelate dehydrogenases (d-ManDHs), belonging to a new d-2-hydroxyacid dehydrogenase family, catalyze the conversion between benzoylformate and d-mandelate using NAD as a coenzyme. We determined the first d-ManDH structure, that of ManDH2 from Enterococcus faecalis IAM10071. The overall structure showed ManDH2 has a similar fold to 2-ketopantoate reductase (KPR), which catalyzes the conversion of 2-ketopantoate to d-pantoate using NADP as a coenzyme. They share conserved catalytic residues, indicating ManDH2 has the same reaction mechanism as KPR. However, ManDH2 exhibits significant structural variations in the coenzyme and substrate binding sites compared to KPR. These structural observations could explain their different coenzyme and substrate specificities.  相似文献   

5.
The protein structures of six comparative modeling targets were predicted in a procedure that relied on improved energy minimization, without empirical rules, to position all new atoms. The structures of human nucleoside diphosphate kinase NM23-H2, HPr from Mycoplasma capricolum, 2Fe-2S ferredoxin from Haloarcula marismortui, eosinophil-derived neurotoxin (EDN), mouse cellular retinoic acid protein I (CRABP1), and P450eryf were predicted with root mean square deviations on Cα atoms of 0.69, 0.73, 1.11, 1.48, 1.69, and 1.73 Å, respectively, compared to the target crystal structures. These differences increased as the sequence similarity between the target and parent proteins decreased from about 60 to 20% identity. More residues were predicted than form the common region shared by the two crystal structures. In most cases insertions or deletions between the target and the related protein of known structure were not correctly positioned. One two residue insertion in CRABP1 was predicted in the correct conformation, while a nine residue insertion in EDN was predicted in the correct spatial region, although not in the correct conformation. The positions of common cofactors and their binding sites were predicted correctly, even when overall sequence similarity was low. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Recently, it has been shown that lipoxygenase (LO) products affect the substrate specificity of human 15-LO. In the current paper, we demonstrate that soybean LO-1 (sLO-1) is not affected by its own products, however, inhibitors which bind the allosteric site, oleyl sulfate (OS) and palmitoleyl sulfate (PS), not only lower catalytic activity, but also change the substrate specificity, by increasing the arachidonic acid (AA)/linoleic acid (LA) ratio to 4.8 and 4.0, respectively. The fact that LO inhibitors can lower activity and also change the LO product ratio is a new concept in lipoxygenase inhibition, where the goal is to not only reduce the catalytic activity but also alter substrate selectivity towards a physiologically beneficial product.  相似文献   

7.
Tryptophan 128 of hydroxynitrile lyase of Manihot esculenta (MeHNL) covers a significant part of a hydrophobic channel that gives access to the active site of the enzyme. This residue was therefore substituted in the mutant MeHNL-W128A by alanine to study its importance for the substrate specificity of the enzyme. Wild-type MeHNL and MeHNL-W128A showed comparable activity on the natural substrate acetone cyanohydrin (53 and 40 U/mg, respectively). However, the specific activities of MeHNL-W128A for the unnatural substrates mandelonitrile and 4-hydroxymandelonitrile are increased 9-fold and approximately 450-fold, respectively, compared with the wild-type MeHNL. The crystal structure of the MeHNL-W128A substrate-free form at 2.1 A resolution indicates that the W128A substitution has significantly enlarged the active-site channel entrance, and thereby explains the observed changes in substrate specificity for bulky substrates. Surprisingly, the MeHNL-W128A--4-hydroxybenzaldehyde complex structure at 2.1 A resolution shows the presence of two hydroxybenzaldehyde molecules in a sandwich type arrangement in the active site with an additional hydrogen bridge to the reacting center.  相似文献   

8.
To better understand the ligand-binding mechanism of protein Pir7b, important part in detoxification of a pathogen-derived compound against Pyricularia oryzae, a 3D structure model of protein Pir7b was constructed based on the structure of the template SABP2. Three substrates were docking to this protein, two of them were proved to be active, and some critical residues are identified, which had not been confirmed by the experiments. His87 and Leu17 considered as ‘oxyanion hole’ contribute to initiating the Ser86 nucleophilic attack. Gln187 and Asp139 can form hydrogen bonds with the anilid group to maintain the active binding orientation with the substrates. The docking model can well interpret the specificity of protein Pir7b towards the anilid moiety of the substrates and provide valuable structure information about the ligand binding to protein Pir7b. Figure Ligand binding analysis based on the refined Pir7b model. Magenta dash line, hydrogen bond; Red dash line, distance label. (a) Docking of 2-naphthol AS-acetate to Pir7b model. A 3D figure of 2-naphthol AS-acetate-Pir7b complex is also attached (b) Docking of 2-naphthol AS-2-chlor-propionate to Pir7b model. (c) Docking of 2-naphthol-acetate to Pir7b model.  相似文献   

9.
CY-007 and CY-049 pteridine glycosyltransferases (PGTs) that differ in sugar donor specificity to catalyze either glucose or xylose transfer to tetrahydrobiopterin were studied here touncover the structural determinants necessary for the specificity. The importance of the C-terminal domain and its residues 218 and 258 that are different between the two PGTs was assessed via structure-guided domain swapping or single and dual amino acid substitutions. Catalytic activity and selectivity were altered in all the mutants (2 chimeric and 6 substitution) to accept both UDP-glucose and UDP-xylose. In addition, the wild type activities were improved 1.6-4.2 fold in 4 substitution mutants and activity was observed towards another substrate UDP-Nacetylglucosamine in all the substitution mutants from CY-007 PGT. The results strongly support essential role of the C-terminal domain and the two residues for catalysis as well as sugar donor specificity, bringing insight into the structural features of the PGTs. [BMB Reports 2013; 46(1): 37-40]  相似文献   

10.
Human strains of Staphylococcus aureus secrete two papain-like proteases, staphopain A and B. Avian strains produce another homologous enzyme, staphopain C. Animal studies suggest that staphopains B and C contribute to bacterial virulence, in contrast to staphopain A, which seems to have a virulence unrelated function. Here we present a detailed study of substrate preferences of all three proteases. The specificity of staphopain A, B and C substrate-binding subsites was mapped using different synthetic substrate libraries, inhibitor libraries and a protein substrate combinatorial library. The analysis demonstrated that the most efficiently hydrolyzed sites, using Schechter and Berger nomenclature, comprise a P2–Gly↓Ala(Ser) sequence motif, where P2 distinguishes the specificity of staphopain A (Leu) from that of both staphopains B and C (Phe/Tyr). However, we show that at the same time the overall specificity of staphopains is relaxed, insofar as multiple substrates that diverge from the sequences described above are also efficiently hydrolyzed.  相似文献   

11.
Industrial effluents of textile, paper, and leather industries contain various toxic dyes as one of the waste material. It imparts major impact on human health as well as environment. The white rot fungus Pycnoporus cinnabarinus Laccase is generally used to degrade these toxic dyes. In order to decipher the mechanism of process by which Laccase degrade dyes, it is essential to know its 3D structure. Homology modeling was performed in presented work, by satisfying Spatial restrains using Modeller Program, which is considered as standard in this field, to generate 3D structure of Laccase in unison, SWISSMODEL web server was also utilized to generate and verify the alternative models. We observed that models created using Modeller stands better on structure evaluation tests. This study can further be used in molecular docking techniques, to understand the interaction of enzyme with its mediators like 2, 2-azinobis (3-ethylbenzthiazoline-6-sulfonate) (ABTS) and Vanillin that are known to enhance the Laccase activity.  相似文献   

12.
FabH (β-ketoacyl-acyl carrier protein synthase III) is unique in that it initiates fatty acid biosynthesis, is inhibited by long-chain fatty acids providing means for feedback control of the process, and dictates the fatty acid profile of the organism by virtue of its substrate specificity. We report the crystal structures of bacterial FabH enzymes from four different pathogenic species: Enterococcus faecalis, Haemophilus influenzae, Staphylococcus aureus and Escherichia coli. Structural data on the enzyme from different species show important differences in the architecture of the substrate-binding sites that parallel the inter-species diversity in the substrate specificities of these enzymes.  相似文献   

13.
The inner membrane protease (IMP) cleaves intra-organelle sorting peptides from precursor proteins in mitochondria of the yeast Saccharomyces cerevisiae. An unusual feature of the IMP is the presence of two catalytic subunits, Imp1p and Imp2p, which recognize distinct substrate sets even though both enzymes belong to the same protease family. This nonoverlapping substrate specificity was hypothesized to result from the recognition of distinct residues at the P′1 position (also termed +1 position) in the protease substrates. Here, we constructed an extensive series of mutations to obtain a profile of the critical cleavage site residues in IMP substrates and conclude that Imp1p, and not Imp2p, recognizes specific P′1 residues. In addition to its specificity for P′1 residues, Imp1p also shows substrate specificity for the P3 (−3) position. In contrast, Imp2p recognizes the P1 (−1) position and the P3 position. Based on this new understanding of IMP substrate specificity, we conducted a survey for candidate IMP substrates in mammalian mitochondria and found consensus Imp2p cleavage sites in mammalian precursors to cytochrome c1 and glycerol-3-phosphate (G-3-P) dehydrogenase. Presence of a putative Imp2p cleavage site in G-3-P dehydrogenase was surprising, as its yeast ortholog contains an Imp1p cleavage site. To address this issue experimentally, we performed the first co-expression of mammalian IMP with proposed mammalian IMP precursors in yeast and show that murine precursors to cytochrome c1 and G-3-P dehydrogenase are cleaved by murine Imp2p. These results suggest, surprisingly, G-3-P dehydrogenase has switched from Imp1p in yeast to Imp2p in mammals.  相似文献   

14.
A three-dimensional structural model of fructosyl amine oxidase from the marine yeast Pichia N1-1 was generated using the crystal structure of monomeric sarcosine oxidase from Bacillus sp. B-0618 as template. The putative active site region was investigated by site-directed mutagenesis, identifying several amino acid residues likely playing important roles in the enzyme reaction. Asn354 was identified as a residue that plays an important role in substrate recognition and that can be substituted in order to change substrate specificity while maintaining high catalytic activity. While the Asn354Ala substitution had no effect on the V max K m−1 value for fructosyl valine, the V max K m−1 value for fructosyl-ε N-lysine was decreased 3-fold, thus resulting in a 3-fold improvement in specificity for fructosyl valine over fructosyl-ε N-lysine.  相似文献   

15.
Annotations of protein or gene sequences from large scale sequencing projects are based on protein size, characteristic binding motifs, and conserved catalytic amino acids, but biochemical functions are often uncertain. In the large family of short-chain dehydrogenases/reductases (SDRs), functional predictions often fail. Putative tropinone reductases, named tropinone reductase-like (TRL), are SDRs annotated in many genomes of organisms that do not contain tropane alkaloids. SDRs in vitro often accept several substrates complicating functional assignments. Cochlearia officinalis, a Brassicaceae, contains tropane alkaloids, in contrast to the closely related Arabidopsis thaliana. TRLs from Arabidopsis and the tropinone reductase isolated from Cochlearia (CoTR) were investigated for their catalytic capacity. In contrast to CoTR, none of the Arabidopsis TRLs reduced tropinone in vitro. NAD(H) and NADP(H) preferences were relaxed in two TRLs, and protein homology models revealed flexibility of amino acid residues in the active site allowing binding of both cofactors. TRLs reduced various carbonyl compounds, among them terpene ketones. The reduction was stereospecific for most of TRLs investigated, and the corresponding terpene alcohol oxidation was stereoselective. Carbonyl compounds that were identified to serve as substrates were applied for modeling pharmacophores of each TRL. A database of commercially available compounds was screened using the pharmacophores. Compounds identified as potential substrates were confirmed by turnover in vitro. Thus pharmacophores may contribute to better predictability of biochemical functions of SDR enzymes.  相似文献   

16.
The three-dimensional (3D) model of the human acidic mammalian chitinase (hAMCase) was constructed based on the crystal structure of the human chitotriosidase (EC 3.2.1.44, PDB code 1HKK) by using InsightII/Homology module. With the aid of molecular mechanics and molecular dynamics methods, the last refined model was obtained and further assessed by Profile-3D and Procheck, which confirms that the refined model is reliable. Furthermore, the docking results of the ligands (allosamidin and NAG2) into the active site of hAMCase indicate that allosamidin is a more preferred ligand than NAG2, and that Glu119 forms hydrogen bond with allosamidin, which is in good agreement with the experimental results. From the docking studies, we also suggest that Trp10, Glu49, Asp192, and Glu276 in hAMCase are four important determinant residues in binding as they have strong van-der-Waals and electrostatic interactions with the ligand, respectively.  相似文献   

17.
Non-competitive ligands of kainate receptors have focused significant attention as medicinal compounds because they seem to be better tolerated than competitive antagonists and uncompetitive blocker of these receptors. Here we present structural studies (X-ray structure determination, NMR and MS spectra) of novel indole-derived non-competitive antagonists of GluK1/GluK2 receptors, homology models of GluK1 and GluK2 receptors based on novel AMPA receptor template as well as molecular docking of ligands to their molecular targets. We find that the allosteric site is in the receptor transduction domain, in one receptor subunit, not between the two subunits as it was indicated by our earlier studies.  相似文献   

18.
The F420-dependent NADP oxidoreductase enzyme from Methanobrevibacter smithii catalyzes the important electron transfer step during methanogenesis. Therefore, it may act as potential target for blocking the process of methane formation. Its protein sequence is available in GenBank (accession number: ABQ86254.1) however no report has been found about its 3D protein structure. In this work, we first time claim 3D model structure of F420-dependent NADP oxidoreductase enzyme from Methanobrevibacter smithii by comparative homology modeling method. Swiss model and ESyPred3d (via Modeller 6v2) software's were generated the 3D model by detecting 1JAX (A) as template along with sequence identities of 34.272% and 35.40%. Furthermore, PROCHECK with Ramachandran plot and ProSA analysis revealed that swiss model produced better model than Modeller6v2 with 98.90% of residues in favored and additional allowed regions (RM plot) as well as with ProSA Z score of -7.26. In addition, we investigated that the substrate F420 bound at the cavity of the model. Subsequently, inhibitor prediction study revealed that Lovastatin (-22.07 Kcal/mol) and Compactin (Mevastatin) (-21.91 Kcal/mol) produced more affinity for model structure of NADP oxidoreducatse as compared to F420 (-14.40 Kcal/mol). It indicates that the Lovastatin and Compactin (Mevastatin) compounds (Negative regulator) may act as potential inhibitor of F420 dependent NADP oxidoreducatse protein.  相似文献   

19.
The human tissue kallikrein (KLK) family contains 15 secreted serine proteases that are expressed in a wide range of tissues and have been implicated in different physiological functions and disease states. Of these, KLK1 has been shown to be involved in the regulation of multiple physiological processes such as blood pressure, smooth muscle contraction, and vascular cell growth. KLK6 is overexpressed in breast and ovarian cancer tissues and has been shown to cleave peptide derived from human myelin protein and Abeta amyloid peptide in vitro. Here we analyzed the substrate specificity of KLK1 and KLK6, by substrate phage display using a random octapeptide library. Consistent with earlier biochemical data, KLK1 was shown to exhibit both trypsin- and chymotrypsin-like selectivities with Tyr/Arg preferred at site P1, Ser/Arg strongly preferred at P1', and Phe/Leu at P2. KLK6 displayed trypsin-like activity, with the P1 position occupied only by Arg and a strong preference for Ser in P1'. Docking simulations of consensus peptide provide information on the identity of the enzyme residues that are responsible for substrate binding. Bioinformatic analysis suggested several putative KLK6 protein substrates, such as ionotropic glutamate receptor (GluR) and synphilin.  相似文献   

20.
In this paper, we improve the homology search performance by the combination of the predicted protein secondary structures and protein sequences. Previous research suggested that the straightforward combination of predicted secondary structures did not improve the homology search performance, mostly because of the errors in the structure prediction. We solved this problem by taking into account the confidence scores output by the prediction programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号