首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organic extract of the leaves of Schefflera umbellifera exhibited good antimalarial activity when tested against the chloroquine-susceptible strain (D10). Bioassay-guided fractionation of the dichloromethane fraction of the dichloromethane/methanol extract yielded an active compound, betulin, which exhibited good antiplasmodial activity with an IC50 value of 3.2 µg/ml. The reference compound, chloroquine gave an IC50 value of 27.2 ng/ml. Two other compounds were also isolated from the dichloromethane extract namely, 7-hydroxy-6-methoxycoumarin and ent-kaur-16-en-19-oic acid. These two compounds did not exhibit any significant antiplasmodial activity.  相似文献   

2.
A set of derivatives encompassing structural modifications on the privileged phenalenone scaffold were assessed for their antiplasmodial activities against a strain of chloroquine sensitive Plasmodium falciparum F32. Two compounds exhibited considerable effects against the malaria parasite (IC50 ? 1 μg/mL), one of which maintained the same level of activity in a chloroquine-resistant strain. This is the first record of antiplasmodial activity on this type of scaffold, providing a new structural motif as a new lead for antimalarial activity.  相似文献   

3.
Combined use of bioassay-guided fractionation based on in vitro antiplasmodial assay and dereplication based on HPLC-PDA-MS-SPE-NMR led to isolation of (6S,7R,8S)-14-acetoxy-8-[2-hydroxymethylacrylat]-15-helianga-1(10),4,11(13)-trien-15-al-6,12-olid and (5R,6R,7R,8S,10S)-14-acetoxy-8-[2-hydroxymethylacrylat]-elema-1,3,11(13)-trien-15-al-6,12-olid, along with vernodalol, vernodalin, and 11,13β-dihydroxyvernodalin from extract of Distephanus angulifolius. All compounds were identified by spectroscopic methods, including 1D and 2D homo- and heteronuclear NMR experiments. The isolated compounds showed IC50 values in the range 1.6-3.8 μM and 2.1-4.9 μM against chloroquine sensitive D10 and chloroquine resistant W2 Plasmodium falciparum strains, respectively.  相似文献   

4.
Although quinones have been the subject of great interest as possible antimalarial agents, the mechanism of their antimalarial activity is poorly understood. Flavoenzyme electrontransferase-catalyzed redox cycling of quinones, and their inhibition of the antioxidant flavoenzyme glutathione reductase (GR, EC 1.8.1.7) have been proposed as possible mechanisms. Here, we have examined the activity of a number of quinones, including the novel antitumor agent RH1, against the malaria parasite Plasmodium falciparum strain FcB1 in vitro, their single-electron reduction rates by P. falciparum ferredoxin:NADP+ reductase (PfFNR, EC 1.18.1.2), and their ability to inhibit P. falciparum GR. The multiparameter statistical analysis of our data implies, that the antiplasmodial activity of fully-substituted quinones (n = 15) is relatively independent from their one-electron reduction potential (). The presence of aziridinyl groups in quinone ring increased their antiplasmodial activity. Since aziridinyl-substituted quinones do not possess enhanced redox cycling activity towards PfFNR, we propose that they could act as as DNA-alkylating agents after their net two-electron reduction into aziridinyl-hydroquinones. We found that under the partial anaerobiosis, i.e., at the oxygen concentration below 40-50 μM, this reaction may be carried out by single-electron transferring flavoenzymes present in P. falciparum, like PfFNR. Another parameter increasing the antiplasmodial activity of fully-substituted quinones is an increase in their potency as P. falciparum GR inhibitors, which was revealed using multiparameter regression analysis. To our knowledge, this is the first quantitative demonstration of a link between the antiplasmodial activity of compounds and GR inhibition.  相似文献   

5.
A novel series of semi-synthetic gomphostenin derivatives (19) were prepared utilizing C-14 hydroxyl group for the first time and studied for their antimalarial properties. In vitro antiplasmodial activity was evaluated against both the chloroquine sensitive and resistant strains of Plasmodium falciparum. Most of the compounds exhibited superior or comparable antiplasmodial activity compared to parent compound, that is, gomphostenin (GN). Based upon in vitro antiplasmodial activity, compounds with IC50 values less than 10 μM were selected for in vivo antiplasmodial evaluation against Plasmodium berghei infection in mice model. GN derivatives 3 and 5 were found to have curative activity with moderate chemosuppression of 65% and 69%, respectively, at the dose level of 150 mg/kg/day.  相似文献   

6.
In an effort to find antimalarial drugs, a systematic in vitro evaluation on a chloroquine-resistant strain of Plasmodium falciparum (FcB1) was undertaken on sixty plant extracts collected in French Guiana. The methanol extract obtained from the latex of Moronobea coccinea exhibited a strong antiplasmodial activity (95% at 10 μg/ml). The phytochemical investigation of this extract led to the isolation of eleven polycyclic polyprenylated acylphloroglucinols (PPAPs), from which eight showed potent antiplasmodial activity with IC50 ranged from 3.3 μM to 37.2 μM.  相似文献   

7.
A small library of antiplasmodial methoxy-thiazinoquinones, rationally designed on the model of the previously identified hit 1, has been prepared by a simple and inexpensive procedure. The synthetic derivatives have been subjected to in vitro pharmacological screening, including antiplasmodial and toxicity assays. These studies afforded a new lead candidate, compound 9, endowed with higher antiplasmodial potency compared to 1, a good selectivity index when tested against a panel of mammalian cells, no toxicity against RBCs, a synergistic antiplasmodial action in combination with dihydroartemisinin, and a promising inhibitory activity on stage V gametocyte growth. Computational studies provided useful insights into the structural requirements needed for the antiplasmodial activity of thiazinoquinone compounds and on their putative mechanism of action.  相似文献   

8.
We report the synthesis and in vitro antiplasmodial activity of 35 compounds, designed as analogues of the naturally occurring aurones. Several of these analogues showed submicromolar antimalarial activity against a chloroquine-resistant strain of Plasmodium falciparum (FcB1-Columbia strain) cultured on human erythrocytes. Substitution of the intracyclic oxygen in aurones by a nitrogen atom and systematic variation of the substituent at the B-ring revealed promising leads showing good activity on the CQ-resistant strain. In particular, 4,6-dimethoxy-4′-ethylazaaurone 22 showed antiplasmodial potency without noticeable toxicity. The easy synthesis of this family of compounds and the relevant antiplasmodial activity are in favor of promising candidates for further development.  相似文献   

9.
Bioassay-guided fractionation of an ethanol extract of a Madagascar collection of the bark of Scutia myrtina led to the isolation of three new anthrone–anthraquinones, scutianthraquinones A, B and C (13), one new bisanthrone–anthraquinone, scutianthraquinone D (4), and the known anthraquinone, aloesaponarin I (5). The structures of all compounds were determined using a combination of 1D and 2D NMR experiments, including COSY, TOCSY, HSQC, HMBC, and ROESY sequences, and mass spectrometry. All the isolated compounds were tested against the A2780 human ovarian cancer cell line for antiproliferative activities, and against the chloroquine-resistant Plasmodium falciparum strains Dd2 and FCM29 for antiplasmodial activities. Compounds 1, 2 and 4 showed weak antiproliferative activities against the A2780 ovarian cancer cell line, while compounds 14 exhibited moderate antiplasmodial activities against P. falciparum Dd2 and compounds 1, 2, and 4 exhibited moderate antiplasmodial activities against P. falciparum FCM29.  相似文献   

10.
In this article we present a series of non-cytotoxic potent human choline kinase (CK) inhibitors that exhibit nanomolar antiplasmodial activity in vitro. The most active antiplasmodial compounds, 10ab, bearing a pyridinium cationic head were inactive against CK, while compounds 10g and 10j with a quinolinium moiety exhibit moderate inhibition of both the parasite and the enzyme. The results point towards an additional mechanism of action unrelated to CK inhibition that remains to be established.  相似文献   

11.
Bioassay-directed fractionation of South Pacific marine sponges of the genus Xestospongia has led to the isolation of a number of halenaquinone-type polyketides, including two new derivatives named xestosaprol C methylacetal 7 and orhalquinone 8. Chemical characterization of these two new compounds was achieved by extensive 1D and 2D NMR spectroscopic studies. Evaluation of anti-phospholipase A2, anti-farnesyltransferase and antiplasmodial activities of this series is presented and structure/activity relationships are discussed. Orhalquinone 8 displayed a significant inhibition of both human and yeast farnesyltransferase enzymes, with IC50 value of 0.40 μM and was a moderate growth inhibitor of Plasmodium falciparum.  相似文献   

12.
A variegate group of metallodrugs was evaluated in vitro for antimalarial activity through the pLDH test. The panel comprised one mononuclear gold(III) complex, (Aubipy), three dinuclear gold(III) compounds (Auoxo4, Auoxo5 and Auoxo6), three ruthenium(III) complexes (NAMI A, PMRU20, PMRU27), one ruthenium(II) complex (PMRU52), one bismuth(III) compound (Bismuth citrate), antimony trichloride (SbCl3) and arsenic trioxide (As2O3). This panel, although relatively small, was built up in such a way to include a variety of metal centers, structural motifs and metal coordination environments. In general, the tested compounds turned out to contrast effectively Plasmodium falciparum growth in vitro. In two cases, i.e. NAMI A and antimony trichloride, IC50 values in the high nanomolar range were measured. Notably, the antiplasmodial effects appear not to be correlated to in vitro anticancer properties. The mechanistic and pharmacological implications of the obtained results are discussed.  相似文献   

13.
A series of dibenzylideneacetones (A1-A12) and some of their pyrazolines (B1-B4) were synthesized and evaluated in vitro for blood stage antiplasmodial properties in Plasmodium falciparum culture using SYBR-green-I fluorescence assay. The compound (1E, 4E)-1,5-bis(3,4-dimethoxyphenyl)penta-1,4-dien-3-one (A9) was found to be the most active with IC50 of 1.97 μM against chloroquine-sensitive strain (3D7) and 1.69 μM against chloroquine-resistant field isolate (RKL9). The MTT based cytotoxicity assay on HeLa cell line has confirmed that A9 is selective in its action against malaria parasite (with a therapeutic index of 166). Our results revealed that these compounds exhibited promising antiplasmodial activities which can be further explored as potential leads for the development of cheaper, safe, effective and potent drugs against chloroquine-resistant malarial parasites.  相似文献   

14.
In an effort to find antimalarial drugs, a systematic in vitro evaluation on a chloroquine-resistant strain of Plasmodium falciparum (FcB1) was undertaken on sixty plant extracts collected in French Guiana. The ethyl acetate extract obtained from the root barks of Symphonia globulifera exhibited a strong antiplasmodial activity (97% at 10 μg/ml). The phytochemical investigation of this extract led to the isolation of nine polycyclic polyprenylated acylphloroglucinol (PPAPs) compounds and two oxidized derivatives. All compounds showed antiplasmodial activity with IC50s ranged from 2.1 to 10.1 μM. A LC/ESI-MSn study performed on polyprenylated benzophenones previously isolated from Moronobea coccinea provided a reliable method for their detection in the extract and structural elucidation.  相似文献   

15.
Preliminary screening of a series of medicinal plants, traditionally used in Tanzania, showed an IC50 of 15.6-31.2 μg/ml for the crude extract of the root of Ormocarpum kirkii S. Moore (Papilionaceae) against Plasmodium falciparum. A bioguided isolation was performed in order to isolate the active constituents. Twelve constituents were obtained and identified using NMR and MS data, and optical rotation measurements. The compounds comprised seven (I-3,II-3)-biflavonoids, three (I-3,II-3)-bi-4-phenyldihydrocoumarins, an isoflavanone and a C-glucosylated flavone. Six compounds, liquiritigeninyl-(I-3,II-3)-naringenin, apigeninyl-(I-3,II-3)-naringenin, 7-O-β-D-glucopyranosylchamaejasmin, (3R,4S,3″R,4″S)-5,5″-di-O-methyldiphysin, 7-O-β-D-glucopyranosyldiphysin, and 4″-hydroxydiphysolone, were isolated in addition to six known components. The compounds were evaluated for antimicrobial activity in a broad screening panel, including P. falciparum. Seven of these showed antiplasmodial activity; isochamaejasmin being the most active with an IC50 of 7.3 ± 3.8 μM, but the selectivity was rather limited. Thus, these constituents may contribute, at least in part, to the antimalarial use of O. kirkii in traditional medicine.  相似文献   

16.
Larvae of many benthic invertebrates settle on surfaces where they metamorphose into juveniles if suitable substrata are available, and are responsible for the major costs of biofouling. When assessing new formulations or compounds for potential antifouling (AF) application, constraints such as seasonal availability may restrict most bioassays to relatively few taxa and species. For example, amongst barnacles, Amphibalanus amphitrite is popular as a test organism but is it really representative of other barnacle species? In order to test this hypothesis, we have chosen to work with marine natural extracts as a probe. Indeed, one substitution technology to toxic metal-based coatings to control fouling is the development of AF coatings with active compounds derived from marine organisms or analogues of the lead compounds. In this study, the AF activity and toxicity of extracts from 30 algae from the North East Atlantic coast were investigated for their potential anti-settlement activities against larvae of two species of barnacle, A. amphitrite and Semibalanus balanoides. As a trend, most of the active extracts displayed activity towards S. balanoides, only few displayed targeted activity against A. amphitrite, or against both species. In order to better understand if this tendency could be linked to chemical ecology, surface extracts were prepared on a selection of species. The results highlight that surface extracts of algae all displayed highest levels of activity than total extracts when tested on S. balanoides. This difference illustrates that specific compounds in their ecological context can have potentially a better efficacy on target species.  相似文献   

17.
Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells.  相似文献   

18.
To identify a new safe antiplasmodial molecular scaffold, an original series of 2-trichloromethylquinazolines, functionalized in position 4 by an alkyl- or arylamino substituent, was synthesized from 4-chloro-2-trichloromethylquinazoline 1, via a cheap, fast and efficient solvent-free operating procedure. Among the 40 molecules prepared, several exhibit a good profile with both a significant antiplasmodial activity on the W2 Plasmodium falciparum strain (IC50 values: 0.4–2.2 μM) and a promising toxicological behavior regarding human cells (HepG2/W2 selectivity indexes: 40–83), compared to the antimalarial drug compounds chloroquine and doxycycline. The in vitro antitoxoplasmic and antileishmanial evaluations were conducted in parallel on the most active molecules, showing that these ones specifically display antiplasmodial properties.  相似文献   

19.
Along with two known compounds (1 and 2), four new clerodane diterpenes were isolated and identified from the stem bark of Polyalthia longifolia: cleroda-3-ene pyrrole-15,16-dione (3), cleroda-3-ene, pyrrolidine-15,16-dione (4), cleroda-3,13(14)E-diene-15,16-diamide (5), and cleroda-3-ene-15,16-diamide (6). Their structures were elucidated by combinations of NMR, MS and IR. Using the WHO Mark III Microtest assay, the isolated compounds were evaluated for their antiplasmodial effects. They showed antiplasmodial effects, with IC50s ranging from 4.5 to 213.8 μM.  相似文献   

20.
Two new indole alkaloids, bisnicalaterine D (1), consisting of an eburnane and a corynanthe type of skeletons, and nicalaterine A (2) were isolated from the bark of Hunteria zeylanica. Their structures were elucidated by various spectroscopic data such as NMR and CD spectra. A series of bisnicalaterines and nicalaterine A showed potent antiplasmodial activity against Plasmodium falciparum 3D7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号