首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure-function relationships in cardiac troponin T   总被引:3,自引:0,他引:3  
Regions of rabbit and bovine cardiac troponin T that are involved in binding tropomyosin, troponin C and troponin I have been identified. Two sites of contact for tropomyosin have been located, situated between residues 92-178 and 180-284 of troponin T. A cardiac-specific binding site for troponin I has been identified between residues 1-68 of cardiac troponin T, within a region of the protein that has previously been shown to be encoded by a series of exons that are expressed in a tissue-specific and developmentally regulated manner. The binding site for troponin C is located between residues 180-284 of cardiac troponin T. When isolated from fresh bovine hearts, cardiac troponin T contained 0.21 +/- 0.11 mol phosphate per mol; incubation with phosphorylase kinase increased the phosphate content to approx. 1 mol phosphate per mol. One site of phosphorylation was identified as serine-1; a second site of phosphorylation was located within peptide CB3 (residues 93-178) and has been tentatively identified as serine-176. Addition of troponin C to cardiac troponin T does not inhibit the phosphorylation of this latter protein that is catalysed by phosphorylase b kinase.  相似文献   

2.
Isolation and functional comparison of bovine cardiac troponin T isoforms   总被引:9,自引:0,他引:9  
We report on the isolation of two bovine cardiac troponin isoforms which differ in sequence near the amino terminus of troponin T (Risnik, V. V., Verin, A. D., and Gusev, N. B. (1985) Biochem. J. 225, 549-552). The isoforms were isolated by direct separation on DEAE-cellulose and were also obtained by reconstitution of urea-dissociated subunits. The two isoforms were compared for their effects on processes involving interactions of troponin with tropomyosin and actin. The two isoforms had similar abilities to promote tropomyosin polymerization. They allowed equal potentiation, by high concentration of myosin subfragment 1, of the thin filament-activated MgATPase rate. In the presence of lower concentrations of myosin subfragment 1, the MgATPase rate was 96% sensitive to Ca2+, regardless of which troponin isoform was present. The Ca2+ concentration required to activate the MgATPase rate was similar but not identical for thin filaments containing one isoform or the other. In the presence of the smaller isoform, the Ca2+-activation curve is shifted 0.1 to 0.15 pCa units to the left. At 10(-6) M Ca2+ the MgATPase rate is 50% greater when the smaller troponin T isoform is present than when the larger is present. These results indicate that the variable region of troponin T influences the overall response of the thin filament to Ca2+, and raises the possibility that regulation of this region by mRNA splicing may modulate muscle function.  相似文献   

3.
Molluscan troponin regulates muscle contraction through a novel Ca(2+)-dependent activating mechanism associated with Ca(2+)-binding to the C-terminal domain of troponin C. To elucidate the further details of this regulation, we performed limited chymotryptic digestion of the troponin complex from akazara scallop striated muscle. The results indicated that troponin T is very susceptible to the protease, compared to troponin C or troponin I. The cleavage occurred at the C-terminal extension, producing an N-terminal 33-kDa fragment and a C-terminal 6-kDa fragment. This extension is conserved in various invertebrate troponin T proteins, but not in vertebrate troponin T. A ternary complex composed of the 33-kDa fragment of troponin T, troponin I, and troponin C could be separated from the 6-kDa troponin T fragment by gel filtration. This complex did not show any Ca(2+)-dependent activation of the Mg-ATPase activity of rabbit-actomyosin-scallop-tropomyosin. In addition, the actin-tropomyosin-binding affinity of this complex was significantly decreased with increasing Ca(2+) concentration. These results indicate that the C-terminal extension of molluscan troponin T plays a role in anchoring the troponin complex to actin-tropomyosin filaments and is essential for regulation.  相似文献   

4.
Ward DG  Brewer SM  Gallon CE  Gao Y  Levine BA  Trayer IP 《Biochemistry》2004,43(19):5772-5781
Phosphorylation of the cardiac troponin complex by PKA at S22 and S23 of troponin I (TnI) accelerates Ca(2+) release from troponin C (TnC). The region of TnI around the bisphosphorylation site binds to, and stabilizes, the Ca(2+) bound N-terminal domain of TnC. Phosphorylation interferes with this interaction between TnI and TnC resulting in weaker Ca(2+) binding. In this study, we used (1)H-(15)N-HSQC NMR to investigate at the atomic level the interaction between an N-terminal fragment of TnI consisting of residues 1-64 of TnI (I1-64) and TnC. We produced several mutants of I1-64, TnI, and TnC to test the contribution of certain residues to the transmission of the phosphorylation signal in both NMR experiments and functional assays. We also investigated how phosphorylation of the PKC sites in I1-64 (S41 and S43) affects the interaction of I1-64 with TnC. We found that phosphorylation of S22 and S23 produced only localized effects in the structure of I1-64 between residues 24 and 34. Residues 1-17 of I1-64 did not bind to TnC, and residues 38-64 bound tightly to the C-terminal domain of TnC regardless of phosphorylation. Residues 22-34 bound weakly to TnC in a phosphorylation sensitive manner. Bisphosphorylation prevented this phosphorylation switch region from interacting with TnC. Systematic mutation of residues in the phosphorylation switch did not prevent PKA phosphorylation from accelerating Ca(2+) release from troponin. We conclude that the phosphorylation switch binds to TnC via an extended interaction site spanning residues R19 to A34.  相似文献   

5.
6.
Bovine cardiac troponin is similar to rabbit skeletal troponin with respect to secondary structure, amino acid composition and molecular weight of the subunits, but differs slightly with respect to biological activity and surface charges of the subunits. Previous circular-dichroic studies of the subunits and recombination of subunits have indicated significant Ca2+-induced delocalized conformational changes. Present studies of the native troponin complex are not in accord with such changes. Furthermore the formation of the troponin-tropomyosin complex in vitro results in no delocalized conformational changes, nor does it sensitize troponin to Ca2+-induced changes. It is suggested that the troponin complex cannot be dissociated into subunits without significant and irreversible conformational perturbation.  相似文献   

7.
Fifteen percent of the mutations causing familial hypertrophic cardiomyopathy are in the troponin T gene. Most mutations are clustered between residues 79 and 179, a region known to bind to tropomyosin at the C-terminus near the complex between the N- and C-termini. Nine mutations were introduced into a troponin T fragment, Gly-hcTnT(70-170), that is soluble, alpha-helical, binds to tropomyosin, promotes the binding of tropomyosin to actin, and stabilizes an overlap complex of N-terminal and C-terminal tropomyosin peptides. Mutations between residues 92 and 110 (Arg92Leu, Arg92Gln, Arg92Trp, Arg94Leu, Ala104Val, and Phe110Ile) impair tropomyosin-dependent functions of troponin T. Except for Ala104Val, these mutants bound less strongly to a tropomyosin affinity column and were less able to stabilize the TM overlap complex, effects that were correlated with increased stability of the troponin T, measured using circular dichroism. All were less effective in promoting the binding of tropomyosin to actin. Mutations within residues 92-110 may cause disease because of altered interaction with tropomyosin at the overlap region, critical for cooperative actin binding and regulatory function. A model for a five-chained coiled-coil for troponin T in the tropomyosin overlap complex is presented. Mutations outside the region (Ile79Asn, Delta 160Glu, and Glu163Lys) functioned normally and must cause disease by another mechanism.  相似文献   

8.
Amino acid sequence of bovine cardiac troponin I   总被引:4,自引:0,他引:4  
Troponin I (TnI) is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium sensitivity to striated muscle actomyosin ATPase activity. We have determined the amino acid sequence of TnI from adult bovine cardiac muscle. This protein is a single polypeptide chain of 211 amino acids with an acetylated amino terminus, a calculated molecular weight of 23,975, and a net charge of +17 at neutral pH. There was no evidence for heterogeneity of the sequence. Comparison with other available TnI sequences shows an amino-terminal extension of 27-33 residues which is present in cardiac but not skeletal TnI. The remainder of the polypeptide is common to both cardiac and skeletal TnI. In the amino-terminal half of the common polypeptide, only 29% of the residues are invariant in all sequences. The carboxyl-terminal half (residues 124-210) is much more highly conserved, with 66% invariant residues. Bovine cardiac TnI and rabbit cardiac TnI are very similar in sequence: only 12 of 26 residues are identical in the amino-terminal segments, but the remaining residues of the proteins are 97% identical.  相似文献   

9.
Structure-function studies of the T4 endonuclease V repair enzyme   总被引:5,自引:0,他引:5  
  相似文献   

10.
Protein dephosphorylation by protein phosphatase 1 (PP1), acting in concert with protein kinase C (PKC) and protein kinase A (PKA), is a pivotal regulatory mechanism of protein phosphorylation. Isolated rat cardiac myofibrils phosphorylated by PKC/PKA and dephosphorylated by PP1 were used in determining dephosphorylation specificities, Ca(2+)-stimulated Mg(2+)ATPase activities, and Ca(2+) sensitivities. In reconstituted troponin (Tn) complex, PP1 displayed distinct substrate specificity in dephosphorylation of TnT preferentially to TnI, in vitro. In situ phosphorylation of cardiomyocytes with calyculin A, a protein phosphatase inhibitor, resulted in an increase in the phosphorylation stiochiometry of TnT (0.3 to 0.5 (67%)), TnI (2.6 to 3.6 (38%)), and MLC2 (0.4 to 1.7 (325%)). These results further confirmed that though MLC2 is the preferred target substrate for protein phosphatase in the thick filament, the Tn complex (TnI and TnT) from thin filament and C-protein in the thick filament are also protein phosphatase substrates. Our in vitro dephosphorylation experiments revealed that while PP1 differentially dephosphorylated within TnT at multiple sites, TnI was uniformly dephosphorylated. Phosphopeptide maps from the in vitro experiments show that TnT phosphopeptides at spots 4A and 4B are much more resistant to PP1 dephosphorylation than other TnT phosphopeptides. Mg(2+)ATPase assays of myofibrils phosphorylated by PKC/PKA and dephosphorylated by PP1 delineated that while PKC and PKA phosphorylation decreased the Ca(2+)-stimulated Mg(2+)ATPase activities, dephosphorylation antagonistically restored it. PKC and PKA phosphorylation decreased Ca(2+) sensitivity to 3.6 microM and 5.0 microM respectively. However, dephosphorylation restored the Mg(2+)ATPase activity of PKC (99%) and PKA (95%), along with the Ca(2+) sensitivities (3.3 microM and 3.0 microM, respectively).  相似文献   

11.
Bacterially expressed alpha-tropomyosin lacks the amino-terminal acetylation present in muscle tropomyosin and binds poorly to actin (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). Using a linear lattice model, we determined the affinity (Ko) of unacetylated tropomyosin or troponin-unacetylated tropomyosin for an isolated site on the actin filament and the fold increase in affinity (y) when binding is to an adjacent site. The absence of tropomyosin acetylation decreased Ko 2 orders of magnitude in the absence of troponin. Tropomyosin acetylation also enhanced troponin-tropomyosin binding to actin, not by increasing cooperativity (y), but rather by increasing Ko. These results suggest that the amino-terminal region of tropomyosin is a crucial actin binding site. Troponin promoted unacetylated tropomyosin binding to actin, increasing Ko more than 1,000-fold. Troponin70-259, which lacks the troponin T peptide (1-69) spanning the overlap between adjacent tropomyosins, behaved similarly to intact troponin. Cooperative interactions between adjacent troponin-tropomyosin complexes remained strong despite the use of a nonpolymerizable tropomyosin and a troponin unable to bridge neighboring tropomyosins physically. The Ko for troponin70-259-unacetylated tropomyosin was 500-fold greater than for troponin159-259-unacetylated tropomyosin, indicating that troponin T residues 70-158 are critical for anchoring troponin-tropomyosin to F-actin. The mechanism of cooperative thin filament assembly is discussed.  相似文献   

12.
Protein S is a vitamin K-dependent plasma protein. It functions as a cofactor to activated protein C in the inactivation of factors Va and VIIIa by limited proteolysis. Protein S is very sensitive to proteolysis by thrombin which reduces its calcium ion binding and leads to a loss of its cofactor activity. We have now determined the sequence of the 100 amino-terminal amino acid residues and localized the thrombin cleavage sites. Protein S contains 11 gamma-carboxyglutamic acid residues in the amino-terminal region (residues 1-36). This part of protein S is highly homologous to the corresponding parts in the other vitamin K-dependent clotting factors, whereas the region between residues 45 and 75 is not at all homologous to the other clotting factors. Thrombin cleaves two peptide bonds in this part of protein S, first at arginine 70 and then at arginine 52. The peptide containing residues 53-70 is released from protein S after thrombin cleavage. The amino-terminal fragment, residues 1-52, is linked to the large carboxyl-terminal fragment by a disulfide bond, which involves cysteine 47. After residue 78, protein S is again homologous to factors IX and X and to proteins C and Z, but not to prothrombin. Position 95 is occupied by a beta-hydroxyaspartic acid residue.  相似文献   

13.
Amino acid sequence of rabbit cardiac troponin T   总被引:2,自引:0,他引:2  
The complete amino acid sequence of the major isoform of rabbit cardiac troponin T was determined by the application of manual and automated Edman degradation procedures to fragments generated by suitable chemical or proteolytic cleavages. The protein has a polypeptide chain length of 276 amino acid residues, a Mr of 32,881, is negatively charged at neutral pH, and must be encoded by a different structural gene than rabbit skeletal troponin T. A more basic isoform differs in the NH2-terminal region by the replacement of 7 glutamic acid residues by neutral amino acids. Comparison of the sequence with that of rabbit skeletal troponin T shows close homology in those structural regions (residues 47-151 and 170-236 of rabbit skeletal troponin T) previously implicated in interactions with tropomyosin, troponin I and troponin C and predicts similar secondary structural features. In addition, the NH2- (16 residues) and COOH-terminal (10 residues) segments are homologous. In the cardiac protein, the regions of residues 17-46, 152-169, and 237-249 (rabbit skeletal troponin T numbering scheme) show little similarity with the skeletal protein and include multiple amino acid differences as well as insertions and/or deletions. Within these nonhomologous segments, however, there are regions of high similarity or identity with the amino acid sequence of chicken cardiac troponin T deduced from DNA sequencing (Cooper, T.A., and Ordahl, C.P. (1985) J. Biol. Chem. 260, 11140-11148). These include residues 36-46, 152-161, and 237-242 and may represent regions of functional importance for cardiac troponin T as compared with the skeletal protein.  相似文献   

14.
Some properties of cardiac troponin T structure.   总被引:1,自引:1,他引:0       下载免费PDF全文
Troponin T is eluted in multiple peaks when the whole bovine cardiac troponin complex is subjected to DEAE-cellulose chromatography in the presence of 8 M-urea. The heterogeneity observed is due to the presence of two forms of troponin T, differing in their Mr values, amino acid content, degree of phosphorylation and aggregation. Cardiac troponin T contains up to 0.8 mol of phosphate/mol of protein. Rabbit skeletal-muscle troponin T kinase phosphorylates the single site located in the N-terminal pentapeptide of cardiac troponin T. The composition of this peptide, (Ser,Asx,Glx,Glx)Val, is similar to that of skeletal-muscle troponin T. The single thiol group of cardiac troponin T is located some 50-70 residues from the N-terminus. The C-terminal sequence of cardiac troponin T is Trp-Lys, i.e. as is the case of skeletal-muscle troponin T.  相似文献   

15.
The reactivity of sulfhydryl groups of bovine cardiac troponin C   总被引:2,自引:0,他引:2  
Bovine cardiac troponin C (cTnC) contains 2 cysteine residues, Cys-35 located in the nonfunctional Ca2+-binding loop I and Cys-84 in the N-terminal segment of the central helix. We have studied the reactivity of Cys residues in cTnC with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM). The latter compound fluoresces only when reacted with the protein. The reaction with DTNB followed second order kinetics with respect to DTNB, the rate constants being 3.37 s-1 M-1 and 1.82 s-1 M-1 in the presence and absence of Ca2+, respectively. These rates are much slower than the rate of reaction with Cys-98 of skeletal TnC (sTnC) or with the urea-denatured cTnC, indicating that both Cys residues are partly buried within the structure of the protein. The increase in reactivity was induced by binding of Ca2+ to the single low affinity Ca2+ binding site (site II). The fluorescence increase upon reaction of cTnC with CPM in the absence of Ca2+ could be fitted with a single exponential equation indicating that both cysteine residues are equally available to the reagent. The reaction in the presence of Ca2+ was biphasic. Analysis of CNBr fragments of cTnC labeled with CPM under various conditions indicated that in the presence of Ca2+ the reactivity of Cys-84 is increased while that of Cys-35 is slightly decreased. This finding is consistent with the model of Herzberg et al. (Herzberg, O., Moult, J., and James, M. N. G. (1986) J. Biol. Chem. 261, 2638-2644) and the data of Ingraham and Hodges (Ingraham, R. H., and Hodges, R. S. (1988) Biochemistry 27, 5891-5898), suggesting that the Ca2+-induced conformational change in the N-terminal half of TnC involves separation of the helix C from the central helix, thereby increasing the accessibility of Cys-84. The slow overall kinetics, however, indicates that the structure in the vicinity of Cys residues is relatively compact regardless of Ca2+. We interpret the increase in reactivity towards CPM as consistent with a Ca2+-induced exposure of a hydrophobic pocket in the vicinity of Cys-84.  相似文献   

16.
Lindhout DA  Li MX  Schieve D  Sykes BD 《Biochemistry》2002,41(23):7267-7274
Cardiac troponin I (cTnI) is the inhibitory component of the troponin complex, and its interaction with cardiac troponin C (cTnC) plays a critical role in transmitting the Ca(2+) signal to the other myofilament proteins in heart muscle contraction. The switch between contraction and relaxation involves a movement of the inhibitory region of cTnI (cIp) from cTnC to actin-tropomyosin. This region of cTnI is prone to missense mutations in heart disease, and a specific mutation, R145G, has been associated with familial hypertrophic cardiomyopathy. It also contains the unique cardiac PKC phosphorylation site at residue T142. To determine the structural consequences of the mutation R145G and the T142 phosphorylation on the interaction of cIp with cTnC, we have utilized 2D [(1)H, (15)N]-HSQC NMR spectroscopy to monitor the binding of native cIp, cIp-R (R145G), and cIp-P (phosphorylated T142), respectively, to the Ca(2+)-saturated C-domain of cTnC (cCTnC.2Ca(2+)). We also report a strategy for cloning, expression, and purification of cTnI peptide, and both synthetic and recombinant peptides are used in this study. NMR chemical shift mapping indicates that the binding epitope of cIp on cCTnC.2Ca(2+) is not greatly affected, but the affinity is reduced by approximately 14-fold by the T142 phosphorylation and approximately 4-fold by the mutation R145G, respectively. This suggests that these modifications of cIp have an adverse effect on the binding of cIp to cCTnC.2Ca(2+). These perturbations may correlate with the impairment or loss of cTnI function in heart muscle contraction.  相似文献   

17.
In contrast to skeletal muscles that simultaneously express multiple troponin T (TnT) isoforms, normal adult human cardiac muscle contains a single isoform of cardiac TnT. To understand the significance of myocardial TnT homogeneity, we examined the effect of TnT heterogeneity on heart function. Transgenic mouse hearts overexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT was investigated in vivo and ex vivo as an experimental system of concurrent presence of two classes of TnT in the adult cardiac muscle. This model of myocardial TnT heterogeneity produced pathogenic phenotypes: echocardiograph imaging detected age-progressive reductions of cardiac function; in vivo left ventricular pressure analysis showed decreased myocardial contractility; ex vivo analysis of isolated working heart preparations confirmed an intrinsic decrease of cardiac function in the absence of neurohumoral influence. The transgenic mice also showed chronic myocardial hypertrophy and degeneration. The dominantly negative effects of introducing a fast TnT into the cardiac thin filaments to produce two classes of Ca(2+) regulatory units in the adult myocardium suggest that TnT heterogeneity decreases contractile function by disrupting the synchronized action during ventricular contraction that is normally activated as an electrophysiological syncytium.  相似文献   

18.
The GTP-induced dissociation of T alpha from T beta gamma initiates the release of transducin from photolyzed rhodopsin and the subsequent activation of the cGMP phosphodiesterase. In this study, site-specific proteolysis and immunoprecipitation were used to map the domain of T alpha that interacts with T beta gamma. We found that Staphylococcus aureus V8 protease rapidly removes a small fragment from T alpha under native conditions, resulting in the formation of a single 38-kDa polypeptide (T alpha'). Under the same conditions, T beta gamma remains intact. A 4.5-fold decrease in the rate of T alpha cleavage by S. aureus protease was observed in the presence of T beta gamma, suggesting T beta gamma binding blocks the protease-sensitive site on T alpha. Amino acid sequence analysis indicated that T alpha' is derived from the cleavage of T alpha at Glu-21. The ability of T alpha' to interact with and activate the retinal phosphodiesterase is not diminished. However, T alpha' is unable to participate in T beta gamma-dependent activities such as the light-stimulated binding of guanine nucleotides, binding to photoexcited rhodopsin, and ADP-ribosylation catalyzed by pertussis toxin. Moreover, the anti-T alpha monoclonal antibody TF16 was able to precipitate T beta gamma in the presence of T alpha, but not with either T alpha' or T alpha-guanosine 5'-O-(3-thiotriphosphate). We conclude that the amino-terminal region of T alpha participates in T beta gamma interaction and discuss our results with respect to the known structure and function of transducin.  相似文献   

19.
Previously, we utilized (15)N transverse relaxation rates to demonstrate significant mobility in the linker region and conformational exchange in the regulatory domain of Ca(2+)-saturated cardiac troponin C bound to the isolated N-domain of cardiac troponin I (Gaponenko, V., Abusamhadneh, E., Abbott, M. B., Finley, N., Gasmi-Seabrook, G., Solaro, R.J., Rance, M., and Rosevear, P.R. (1999) J. Biol. Chem. 274, 16681-16684). Here we show a large decrease in cardiac troponin C linker flexibility, corresponding to residues 85-93, when bound to intact cardiac troponin I. The addition of 2 m urea to the intact cardiac troponin I-troponin C complex significantly increased linker flexibility. Conformational changes in the regulatory domain of cardiac troponin C were monitored in complexes with troponin I-(1-211), troponin I-(33-211), troponin I-(1-80) and bisphosphorylated troponin I-(1-80). The cardiac specific N terminus, residues 1-32, and the C-domain, residues 81-211, of troponin I are both capable of inducing conformational changes in the troponin C regulatory domain. Phosphorylation of the cardiac specific N terminus reversed its effects on the regulatory domain. These studies provide the first evidence that the cardiac specific N terminus can modulate the function of troponin C by altering the conformational equilibrium of the regulatory domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号