首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown the mitogen-activated protein kinases (MAPKs) to be activated in macrophages upon infection with Mycobacterium, and that expression of TNF-alpha and inducible NO synthase by infected macrophages was dependent on MAPK activation. Additional analysis demonstrated a diminished activation of p38 and extracellular signal-regulated kinase (ERK)1/2 in macrophages infected with pathogenic strains of Mycobacterium avium compared with infections with the fast-growing, nonpathogenic Mycobacterium smegmatis and Mycobacterium phlei. However, the upstream signals required for MAPK activation and the mechanisms behind the differential activation of the MAPKs have not been defined. In this study, using bone marrow-derived macrophages from BALB/c mice, we determined that ERK1/2 activation was dependent on the calcium/calmodulin/calmodulin kinase II pathway in both M. smegmatis- and M. avium-infected macrophages. However, in macrophages infected with M. smegmatis but not M. avium, we observed a marked increase in cAMP production that remained elevated for 8 h postinfection. This M. smegmatis-induced cAMP production was also dependent on the calmodulin/calmodulin kinase pathway. Furthermore, stimulation of the cAMP/protein kinase A pathway in M. smegmatis-infected cells was required for the prolonged ERK1/2 activation and the increased TNF-alpha production observed in these infected macrophages. Our studies are the first to demonstrate an important role for the calmodulin/calmodulin kinase and cAMP/protein kinase A pathways in macrophage signaling upon mycobacterial infection and to show how cAMP production can facilitate macrophage activation and subsequent cytokine production.  相似文献   

2.
Previous studies have shown that the ability of Mycobacterium tuberculosis to block a Ca(2+) flux is an important step in its capacity to halt phagosome maturation. This affect on Ca(2+) release results from M. tuberculosis inhibition of sphingosine kinase (SPK) activity. However, these studies did not address the potential role of SPK and Ca(2+) in other aspects of macrophage activation including production of proinflammatory mediators. We previously showed that nonpathogenic Mycobacterium smegmatis and to a lesser extent pathogenic Mycobacterium avium, activate Ca(2+)-dependent calmodulin/calmodulin kinase and MAPK pathways in murine macrophages leading to TNF-alpha production. However, whether SPK functions in promoting MAPK activation upon mycobacterial infection was not defined in these studies. In the present work we found that SPK is required for ERK1/2 activation in murine macrophages infected with either M. avium or M. smegmatis. Phosphoinositide-specific phospholipase C (PI-PLC) and conventional protein kinase C (cPKC) were also important for ERK1/2 activation. Moreover, there was increased activation of cPKC and PI3K in macrophages infected with M. smegmatis compared with M. avium. This cPKC and PI3K activation was dependent on SPK and PI-PLC. Finally, in macrophages infected with M. smegmatis compared with M. avium, we observed enhanced secretion of TNF-alpha, IL-6, RANTES, and G-CSF and found production of these inflammatory mediators to be dependent on SPK, PI-PLC, cPKC, and PI3K. These studies are the first to show that the macrophage proinflammatory response following a mycobacterial infection is regulated by SPK/PI-PLC/PKC activation of ERK1/2 and PI3K pathways.  相似文献   

3.
4.
Tumor necrosis factor-alpha (TNF-alpha) is one of the key cytokines elicited by host macrophages upon challenge with pathogenic mycobacteria. Infection of human peripheral blood mononuclear cells or the murine macrophage cell line J774A-1 with Mycobacterium avium induced activation of the mitogen-activated protein kinases (MAPKs) ERK1/2, p38 and c-Jun N-terminal kinase. U0126, an MEK-specific inhibitor, abrogated M. avium-induced TNF-alpha secretion. Transfection of cells with dominant-negative MEK1 led to the suppression of TNF-alpha release in M. avium-challenged macrophages. M. avium activated p38 MAPK and use of the p38 MAPK inhibitor, SB203580, revealed that the p38 signaling pathway negatively regulates activation of ERK1/2 and release of TNF-alpha. Taken together, these results provide evidence that M. avium-induced TNF-alpha release from macrophages depends on an interplay between the ERK1/2 and the p38 MAPK signaling pathways.  相似文献   

5.
6.
In macrophages, L-arginine can be used by NO synthase and arginase to form NO and urea, respectively. Therefore, activation of arginase may be an effective mechanism for regulating NO production in macrophages through substrate competition. Here, we examined whether IL-13 up-regulates arginase and thus reduces NO production from LPS-activated macrophages. The signaling molecules involved in IL-13-induced arginase activation were also determined. Results showed that IL-13 increased arginase activity through de novo synthesis of the arginase I mRNA and protein. The activation of arginase was preceded by a transient increase in intracellular cAMP, tyrosine kinase phosphorylation, and p38 mitogen-activated protein kinase (MAPK) activation. Exogenous cAMP also increased arginase activity and enhanced the effect of IL-13 on arginase induction. The induction of arginase was abolished by a protein kinase A (PKA) inhibitor, KT5720, and was down-regulated by tyrosine kinase inhibitors and a p38 MAPK inhibitor, SB203580. However, inhibition of p38 MAPK had no effect on either the IL-13-increased intracellular cAMP or the exogenous cAMP-induced arginase activation, suggesting that p38 MAPK signaling is parallel to the cAMP/PKA pathway. Furthermore, the induction of arginase was insensitive to the protein kinase C and p44/p42 MAPK kinase inhibitors. Finally, IL-13 significantly inhibited NO production from LPS-activated macrophages, and this effect was reversed by an arginase inhibitor, L-norvaline. Together, these data demonstrate for the first time that IL-13 down-regulates NO production through arginase induction via cAMP/PKA, tyrosine kinase, and p38 MAPK signalings and underline the importance of arginase in the immunosuppressive activity of IL-13 in activated macrophages.  相似文献   

7.
8.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces innate immune responses through Toll-like receptor (TLR) 2 and TLR4. We investigated the role of apoptosis-regulating signal kinase (ASK) 1 in reactive oxygen species (ROS)-mediated innate immune responses induced by BCG mycobacterial infection. In macrophages, M. bovis BCG stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs), secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, and ROS generation in a TLR2- and TLR4-dependent manner. M. bovis BCG-induced ROS production led to robust activation of ASK1 upstream of the c-jun-N-terminal kinase and p38 MAPK, but not extracellular-regulated kinase 1/2. Blocking ASK1 activity markedly attenuated M. bovis BCG-induced TNF-alpha and IL-6 production by macrophages. Both TLR2 and TLR4 were required for optimal activation of ASK1 in response to M. bovis BCG. Furthermore, we present evidence that TNF receptor-associated factor (TRAF) 6 activities were essential for ROS-mediated ASK1 activation by M. bovis BCG. Finally, ASK1 activities were required for effective control of intracellular mycobacterial survival. Thus, the results of this study suggest a novel role of the TLR-ROS-TRAF6-ASK1 axis in the innate immune response to mycobacteria as a signaling intermediate.  相似文献   

9.
The studies of rare genetic defects, the preliminary results of population-based studies, being validated by the experimental immunocompromised animal models and the current observations accumulated in immunocompromised patients with mycobacterial diseases provide us with insights into the importance of the macrophage activation pathway in controlling human infection with pathogenic and non pathogenic intracellular multiplying mycobacteria. Initial cytokine production by infected macrophages and/or dendritic cells could be crucial in the overall regulation of self cure, acquired protection or immunopathological sequelae expressing the disease. Knowledge of molecular and genetic cross-talks between phagocytic and specialized antigen presenting cells and different mycobacterial products associated with persistence or replication of the intracellular bacteria, could provide further informations on the global immune regulation of the early host responses to infection and the following events. It seems likely that the development of mycobacterial infections in humans will turn out to be as much dependent on the genetic make up of the host as or the virulence of the bacteria.  相似文献   

10.
Mycobacterium tuberculosis survives within host macrophages by actively inhibiting phagosome fusion with lysosomes. Treatment of infected macrophages with ATP induces both cell apoptosis and rapid killing of intracellular mycobacteria. The following studies were undertaken to characterize the effector pathway(s) involved. Macrophages were obtained from p47(phox) and inducible NO synthase gene-disrupted mice (which are unable to produce reactive oxygen and nitrogen radicals, respectively) and P2X(7) gene-disrupted mice. RAW murine macrophages transfected with either the natural resistance-associated macrophage protein gene 1 (Nramp1)-resistant or Nramp1-susceptible gene were also used. The cells were infected with bacille Calmette-Guérin (BCG), and intracellular mycobacterial trafficking was analyzed using confocal and electron microscopy. P2X(7) receptor activation was essential for effective ATP-induced mycobacterial killing, as its bactericidal activity was radically diminished in P2X(7)(-/-) macrophages. ATP-mediated killing of BCG within p47(phox-/-), inducible NO synthase(-/-), and Nramp(s) cells was unaffected, demonstrating that none of these mechanisms have a role in the ATP/P2X(7) effector pathway. Following ATP stimulation, BCG-containing phagosomes rapidly coalesce and fuse with lysosomes. Blocking of macrophage phospholipase D activity with butan-1-ol blocked BCG killing, but not macrophage death. ATP stimulates phagosome-lysosome fusion with concomitant mycobacterial death via P2X(7) receptor activation. Macrophage death and mycobacterial killing induced by the ATP/P2X(7) signaling pathway can be uncoupled, and diverge proximal to phospholipase D activation.  相似文献   

11.
Activation of antigen-presenting cells (APCs) by invariant constituents of pathogens such as lipopolysaccharide (LPS) or bacterial DNA (CpG-DNA) initiates immune responses. We have analyzed the mitogen-activated protein kinase (MAPK) pathways triggered by CpG-DNA and their significance for cytokine production in two subsets of APCs, i.e. macrophages and dendritic cells (DCs). We found that CpG-DNA induced extracellular signal-regulated kinase (ERK) activity in macrophages in a classic MEK-dependent way. This pathway up-regulated tumor necrosis factor production but down-regulated interleukin (IL)-12 production. However, in DCs, which produce large amounts of IL-12, CpG-DNA and LPS failed to induce ERK activity. Consistent with a specific negative regulatory role for ERK in macrophages, chemical activation of this pathway in DCs suppressed CpG-DNA-induced IL-12 production. Overall, these results imply that differential activation of MAP kinase pathways is a basic mechanism by which distinct subsets of innate immune cells regulate their effector functions.  相似文献   

12.

Background

A complex interplay between Leishmania and macrophages influences parasite survival and necessitates disruption of signaling molecules, eventually resulting in impairment of macrophage function. In this study, we demonstrate the immunomodulatory activity of Berberine chloride in Leishmania infected macrophages.

Principal Findings

The IC50 of Berberine chloride, a quaternary isoquinoline alkaloid was tested in an amastigote macrophage model and its safety index measured by a cell viability assay. It eliminated intracellular amastigotes, the IC50 being 2.8 fold lower than its IC50 in promastigotes (7.10 µM vs. 2.54 µM) and showed a safety index >16. Levels of intracellular and extracellular nitric oxide (NO) as measured by flow cytometry and Griess assay respectively showed that Berberine chloride in Leishmania infected macrophages increased production of NO. Measurement of the mRNA expression of iNOS, IL-12 and IL-10 by RT-PCR along with levels of IL-12p40 and IL-10 by ELISA showed that in infected macrophages, Berberine chloride enhanced expression of iNOS and IL-12p40, concomitant with a downregulation of IL-10. The phosphorylation status of extracellular signal related kinase (ERK1/2) and p38 mitogen activated protein kinase (p38 MAPK) was studied by western blotting. In infected macrophages, Berberine chloride caused a time dependent activation of p38 MAPK along with deactivation of ERK1/2; addition of a p38 MAPK inhibitor SB203580 inhibited the increased generation of NO and IL-12p40 by Berberine chloride as also prevented its decrease of IL-10.

Conclusions

Berberine chloride modulated macrophage effector responses via the mitogen activated protein kinase (MAPK) pathway, highlighting the importance of MAPKs as an antiparasite target.  相似文献   

13.
During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1β activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.  相似文献   

14.
Unlike other immune cells, activation of macrophages by stimulating agents, such as lipopolysaccharide (LPS), confers significant resistance to many apoptotic stimuli, but the underlying mechanism of this phenomenon remains largely unknown. Here, we demonstrate that LPS-induced early caspase activation is essential for macrophage survival because blocking caspase activation with a pancaspase inhibitor (zVAD [benzyloxycarbonyl-Val-Ala-Asp]) rapidly induced death of activated macrophages. This type of death process by zVAD/LPS was principally mediated by intracellular generation of superoxide. STAT1 knockout macrophages demonstrated profoundly decreased superoxide production and were resistant to treatment with zVAD/LPS, indicating the crucial involvement of STAT1 in macrophage death by zVAD/LPS. STAT1 level and activity were reciprocally regulated by caspase activation and were associated with cell death. Activation of STAT1 was critically dependent upon serine phosphorylation induced by p38 mitogen-activated protein kinase (MAPK) because a p38 MAPK inhibitor nullified STAT1 serine phosphorylation, reactive oxygen species (ROS) production, and macrophage death by zVAD/LPS. Conversely, p38 MAPK activation was dependent upon superoxide and was also nullified in STAT1 knockout macrophages, probably due to impaired generation of superoxide. Our findings collectively indicate that STAT1 signaling modulates intracellular oxidative stress in activated macrophages through a positive-feedback mechanism involving the p38 MAPK/STAT1/ROS pathway, which is interrupted by caspase activation. Furthermore, our study may provide significant insights in regards to the unanticipated critical role of STAT1 in the caspase-independent death pathway.  相似文献   

15.
Macrophages comprise the major population of cells infiltrating pancreatic islets during the early stages of infection in DBA/2 mice by the D variant of encephalomyocarditis virus (EMC-D virus). Inactivation of macrophages prior to viral infection almost completely prevents EMC-D virus-induced diabetes. This investigation was initiated to determine whether a tyrosine kinase signalling pathway might be involved in the activation of macrophages by EMC-D virus infection and whether tyrosine kinase inhibitors might, therefore, abrogate EMC-D virus-induced diabetes in vivo. When isolated macrophages were infected with EMC-D virus, inducible nitric oxide synthase mRNA was expressed and nitric oxide was subsequently produced. Treatment of macrophages with the tyrosine kinase inhibitor tyrphostin AG126, but not tyrphostin AG556, prior to EMC-D virus infection blocked the production of nitric oxide. The infection of macrophages with EMC-D virus also resulted in the activation of the mitogen-activated protein kinases (MAPKs) p42(MAPK/ERK2)/p44(MAPK/ERK1), p38(MAPK), and p46/p54(JNK). In accord with the greater potency of AG126 than of AG556 in blocking EMC-D virus-mediated macrophage activation, the incidence of diabetes in EMC-D virus-infected mice treated with AG126 (25%) was much lower than that in AG556-treated (75%) or vehicle-treated (88%) control mice. We conclude that EMC-D virus-induced activation of macrophages resulting in macrophage-mediated beta-cell destruction can be prevented by the inhibition of a tyrosine kinase signalling pathway involved in macrophage activation.  相似文献   

16.
In tuberculosis, infecting mycobacteria are phagocytosed by macrophages, which then migrate into deeper tissue and recruit additional cells to form the granulomas that eventually contain infection. Mycobacteria are exquisitely adapted macrophage pathogens, and observations in the mouse model of tuberculosis have suggested that mycobacterial growth is not inhibited in macrophages until adaptive immunity is induced. Using the optically transparent and genetically tractable zebrafish embryo-Mycobacterium marinum model of tuberculosis, we have directly examined early infection in the presence and absence of macrophages. The absence of macrophages led rapidly to higher bacterial burdens, suggesting that macrophages control infection early and are not an optimal growth niche. However, we show that macrophages play a critical role in tissue dissemination of mycobacteria. We propose that residence within macrophages represents an evolutionary trade-off for pathogenic mycobacteria that slows their early growth but provides a mechanism for tissue dissemination.  相似文献   

17.
Establishment of infection by facultative intracellular pathogen Mycobacterium tuberculosis (Mtb) requires adherence to and internalisation by macrophages. However, the effector molecules exploited by Mtb for entry into macrophages remain to be fully understood. The mammalian cell entry (Mce) proteins play an essential role in facilitating the internalisation of mycobacteria into mammalian cells. Here, we characterized Mtb Mce3C as a new mycobacterial surface protein that could promote mycobacterial adhesion to and invasion of macrophages in an RGD motif‐dependent manner. We then further demonstrated that β2 integrin was required for Mce3C‐mediated cell entry. In addition, we found that binding of Mce3C recruited β2 integrin‐dependent signalling adaptors and induced local actin rearrangement at the site of mycobacterial invasion. By using specific antibodies and pharmacological inhibitors, we further demonstrated the involvement of Src‐family tyrosine kinases, spleen tyrosine kinase, Vav, Rho, and Rho‐associated kinase in Mce3C‐mediated mycobacterial invasion. Our results reveal a novel mechanism by which Mtb Mce3C exploits integrin‐mediated signalling cascade for Mce, providing potential targets for the development of therapies against Mtb infection.  相似文献   

18.
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a global threat to human health. Development of drug resistance and co‐infection with HIV has increased the morbidity and mortality caused by TB. Macrophages serve as primary defense against microbial infections, including TB. Upon recognition and uptake of mycobacteria, macrophages initiate a series of events designed to lead to generation of effective immune responses and clearance of infection. However, pathogenic mycobacteria utilize multiple mechanisms for manipulating macrophage responses to protect itself from being killed and to survive within these cells that are designed to kill them. The outcomes of mycobacterial infection are determined by several host‐ and pathogen‐related factors. Significant advancements in understanding mycobacterial pathogenesis have been made in recent years. In this review, some of the important factors/mechanisms regulating mycobacterial survival inside macrophages are discussed.
  相似文献   

19.
Macrophage production of fibronectin, a chemoattractant for fibroblasts   总被引:22,自引:0,他引:22  
Activation of macrophages results in the production of numerous enzymes and effector molecules. One of these monokines released by macrophages can cause directed migration of connective tissue fibroblasts in vitro. Production of this macrophage-derived chemotactic factor for fibroblasts requires activation of the macrophages either in vivo or in vitro and de novo protein synthesis. The chemotactic activity in the macrophage supernatants could be removed by a fibronectin-specific affinity column and was inhibited in the presence of antibodies to fibronectin. Furthermore, chemotactic activity in the depleted macrophage supernatants could be restored by the addition of exogenous fibronectin. Fibronectin was identified in activated macrophage supernatants by an enzyme-linked immunoassay for fibronectin. From these findings it was concluded that activated macrophages release a chemoattractant for fibroblasts and that the primary chemoattractant molecule is fibronectin. The production of fibronectin by activated macrophages may thus serve as an inflammatory mediator that in addition to its other functions can recruit fibroblasts to an area of damaged tissue, where they can proliferate and form the scar tissue necessary for tissue repair. Furthermore, in chronic inflammation, the prolonged activation of macrophages may be related to the extensive fibroblast infiltration and fibrosis that can accompany these lesions.  相似文献   

20.
Lipoarabinomannans (LAM) and lipomannans (LM) are integral parts of the mycobacterial cell wall recognized by cells involved in the innate immune response and have been found to modulate the cytokine response. Typically, mannosylated LAM from pathogenic mycobacteria have been reported to be anti-inflammatory, whereas phosphoinositol-substituted LAM from nonpathogenic species are proinflammatory molecules. In this study, we show that LM from several mycobacterial species, including Mycobacterium chelonae, Mycobacterium kansasii, and Mycobacterium bovis bacillus Calmette-Guérin, display a dual function by stimulating or inhibiting proinflammatory cytokine synthesis through different pathways in murine primary macrophages. LM, but none of the corresponding LAM, induce macrophage activation characterized by cell surface expression of CD40 and CD86 and by TNF and NO secretion. This activation is dependent on the presence of Toll-like receptor (TLR) 2 and mediated through the adaptor protein myeloid differentiation factor 88 (MyD88), but independent of either TLR4 or TLR6 recognition. Surprisingly, LM exerted also a potent inhibitory effect on TNF, IL-12p40, and NO production by LPS-activated macrophages. This TLR2-, TLR6-, and MyD88-independent inhibitory effect is also mediated by LAM from M. bovis bacillus Calmette-Guérin but not by LAM derived from M. chelonae and M. kansasii. This study provides evidence that mycobacterial LM bear structural motifs susceptible to interact with different pattern recognition receptors with pro- or anti-inflammatory effects. Thus, the ultimate response of the host may therefore depend on the prevailing LM or LAM in the mycobacterial envelope and the local host cell receptor availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号