首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strong case has been made for the role and value of mechanistic reasoning in process-oriented sciences, such as molecular biology and neuroscience. This paper shifts focus to assess the role of mechanistic reasoning in an area where it is neither obvious nor expected: population genetics. Population geneticists abstract away from the causal-mechanical details of individual organisms and, instead, use mathematics to describe population-level, statistical phenomena. This paper, first, develops a framework for the identification of mechanistic reasoning where it is not obvious: mathematical and mechanistic styles of scientific reasoning. Second, it applies this framework to demonstrate that both styles are integrated in modern investigations of evolutionary biology. Characteristic of the former, applied population genetic techniques provide statistical evidence for associations between genotype, phenotype, and fitness. Characteristic of the latter, experimental interventions provide causal-mechanical evidence for associations between the very same relationships, often in the same model organisms. The upshot is a richer perspective of how evolutionary biologists build evidence for hypotheses regarding adaptive evolution and a general framework for assessing the scope of mechanistic reasoning across the sciences.  相似文献   

2.
Constraints on form may determine how organisms diversify. As a result of competition for the limited space within the body, investment in adjacent structures could represent an evolutionary compromise. For example, evolutionary trade‐offs resulting from limited space in the head could have influenced how the sizes of the jaw muscle, as well as the eyes, evolved in North American cyprinid fishes. To test the evolutionary independence of the size of these structures, we measured the mass of the three major adductor mandibulae muscles and determined the eye volume in 36 cyprinid species. Using a novel phylogeny, we tested the hypotheses that the sizes of these four structures were negatively correlated with each other during cyprinid evolution. We found that evolutionary change in the adductor mandibulae muscles was generally positively and/or not correlated, suggesting that competition for space among cyprinid jaw muscles has not influenced their evolution. However, there was a negative relationship between mass of adductor mandibulae 1 and eye volume, indicating that change in these physically adjacent structures is consistent with an evolutionary constructional constraint. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 136–146.  相似文献   

3.
Macroclimatic niches are indirect and potentially inadequate predictors of the realized environmental conditions that many species experience. Consequently, analyses of niche evolution based on macroclimatic data alone may incompletely represent the evolutionary dynamics of species niches. Yet, understanding how an organisms’ climatic (Grinnellian) niche responds to changing macroclimatic conditions is of vital importance for predicting their potential response to global change. In this study, we integrate microclimatic and macroclimatic data across 26 species of plethodontid salamanders to portray the relationship between microclimatic niche evolution in response to changing macroclimate. We demonstrate stronger phylogenetic signal in microclimatic niche variables than at the macroclimatic scale. Even so, we find that the microclimatic niche tracks climatic changes at the macroscale, but with a phylogenetic lag at million-year timescales. We hypothesize that behavioral tracking of the microclimatic niche over space and phenology generates the lag: salamanders preferentially select microclimates similar to their ancestral conditions rather than adapting with changes in physiology. We demonstrate that macroclimatic variables are weak predictors of niche evolution and that incorporating spatial scale into analyses of niche evolution is critical for predicting responses to climate change.  相似文献   

4.
Bentley RA 《PloS one》2008,3(8):e3057
The evolution of vocabulary in academic publishing is characterized via keyword frequencies recorded in the ISI Web of Science citations database. In four distinct case-studies, evolutionary analysis of keyword frequency change through time is compared to a model of random copying used as the null hypothesis, such that selection may be identified against it. The case studies from the physical sciences indicate greater selection in keyword choice than in the social sciences. Similar evolutionary analyses can be applied to a wide range of phenomena; wherever the popularity of multiple items through time has been recorded, as with web searches, or sales of popular music and books, for example.  相似文献   

5.
Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans.  相似文献   

6.
Constraints on form should determine how organisms diversify. Owing to competition for the limited space within the body, investment in adjacent structures may frequently represent an evolutionary compromise. For example, evolutionary trade-offs between eye size and jaw muscles in cichlid fish of the African great lakes are thought to represent a constructional constraint that influenced the diversification of these assemblages. To test the evolutionary independence of these structures in Lake Malawi cichlid fish, we measured the mass of the three major adductor mandibulae (AM) muscles and determined the eye volume in 41 species. Using both traditional and novel methodologies to control for resolved and unresolved phylogenetic relationships, we tested the evolutionary independence of these four structures. We found that evolutionary change in the AM muscles was positively correlated, suggesting that competition for space in the head has not influenced diversification among these jaw muscles. Furthermore, there was no negative relationship between change in total AM muscle mass and eye volume, indicating that there has been little effect of the evolution of eye size on AM evolution in Lake Malawi cichlids. The comparative approach used here should provide a robust method to test whether constructional constraints frequently limit phenotypic change in adaptive radiations.  相似文献   

7.
A long‐standing question in biology is how organisms change through time and space in response to their environment. This knowledge is of particular relevance to predicting how organisms might respond to future environmental changes caused by human‐induced global change. Usually researchers make inferences about past events based on an understanding of current static genetic patterns, but these are limited in their capacity to inform on underlying past processes. Natural history collections (NHCs) represent a unique and critical source of information to provide temporally deep and spatially broad time‐series of samples. By using NHC samples, researchers can directly observe genetic changes over time and space and link those changes with specific ecological/evolutionary events. Until recently, such genetic studies were hindered by the intrinsic challenges of NHC samples (i.e. low yield of highly fragmented DNA). However, recent methodological and technological developments have revolutionized the possibilities in the novel field of NHC genomics. In this Special Feature, we compile a range of studies spanning from methodological aspects to particular case studies which demonstrate the enormous potential of NHC samples for accessing large genomic data sets from the past to advance our knowledge on how populations and species respond to global change at multiple spatial–temporal scales. We also highlight possible limitations, recommendations and a few opportunities for future researchers aiming to study NHC genomics.  相似文献   

8.
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.  相似文献   

9.
Photoperiod is a common cue for seasonal plasticity and phenology, but climate change can create cue–environment mismatches for organisms that rely on it. Evolution could potentially correct these mismatches, but phenology often depends on multiple plastic decisions made during different life stages and seasons that may evolve separately. For example, Pararge aegeria (Speckled wood butterfly) has photoperiod-cued seasonal life history plasticity in two different life stages: larval development time and pupal diapause. We tested for climate change-associated evolution of this plasticity by replicating common garden experiments conducted on two Swedish populations 30 years ago. We found evidence for evolutionary change in the contemporary larval reaction norm—although these changes differed between populations—but no evidence for evolution of the pupal reaction norm. This variation in evolution across life stages demonstrates the need to consider how climate change affects the whole life cycle to understand its impacts on phenology.  相似文献   

10.
11.
Extreme weather events are becoming more frequent, severe, and/or widespread as a consequence of anthropogenic climate change. While the economic and ecological implications of these changes have received considerable attention, the role of evolutionary processes in determining organismal responses to these critical challenges is currently unknown. Here we develop a novel theoretical framework that explores how alternative pathways for adaptation to rare selection events can influence population‐level vulnerabilities to future changes in the frequency, scope, and intensity of environmental extremes. We begin by showing that different life histories and trait expression profiles can shift the balance between additive and multiplicative properties of fitness accumulation, favoring different evolutionary responses to identical environmental phenomena. We then demonstrate that these different adaptive outcomes lead to predictable differences in population‐level vulnerabilities to rapid increases in the frequency, intensity, or scope of extreme weather events. Specifically, we show that when the primary mode of fitness accumulation is additive, evolution favors ignoring environmental extremes and lineages become highly vulnerable to extinction if the frequency or scope of extreme weather events suddenly increases. Conversely, when fitness accumulates primarily multiplicatively, evolution favors bet‐hedging phenotypes that cope well with historical extremes and are instead vulnerable to sudden increases in extreme event intensity. Our findings address a critical gap in our understanding of the potential consequences of rare selection events and provide a relatively simple rubric for assessing the vulnerabilities of any population of interest to changes in a wide variety of extreme environmental phenomena.  相似文献   

12.
Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.  相似文献   

13.
Trends and rates of microevolution in plants   总被引:8,自引:0,他引:8  
Bone  Elizabeth  Farres  Agnes 《Genetica》2001,(1):165-182
Evidence for rapid evolutionary change in plants in response to changing environmental conditions is widespread in the literature. However, evolutionary change in plant populations has not been quantified using a rate metric that allows for comparisons between and within studies. One objective of this paper is to estimate rates of evolution using data from previously published studies to begin a foundation for comparison and to examine trends and rates of microevolution in plants. We use data gathered from studies of plant adaptations in response to heavy metals, herbicide, pathogens, changes in pH, global change, and novel environments. Rates of evolution are estimated in the form of two metrics, darwins and haldanes. A second objective is to demonstrate how estimated rates could be used to address specific microevolutionary questions. For example, we examine how evolutionary rate changes with time, life history correlates of evolutionary rates, and whether some types of traits evolve faster than others. We also approach the question of how rates can be used to predict patterns of evolution under novel selection pressures using two contemporary examples: introductions of non-native species to alien environments and global change.  相似文献   

14.
Ecological systems are always subjected to various environmental fluctuations. They evolve under these fluctuations and the resulting systems are robust against them. The diversity in ecological systems is also acquired through the evolution. How do the fluctuations affect the evolutionary processes? Do the fluctuations have direct impact on the species diversity in ecological systems? In the present paper, we investigate the relation between the environmental fluctuation and the evolution of species diversity with a mathematical model of evolutionary ecology. In the model, individual organisms compete for a single restricted resource and the temporal fluctuation in the resource supply is introduced as the environmental fluctuation. The evolutionary process is represented by the mutational change of genotypes which determines their resource utilization strategies. We found that when the environmental state is switched form static to fluctuating conditions, the initial closely related population distributed around the genotype adapted for the static environment is destabilized and divided into two groups in the genotype space; i.e., the evolutionary branching is induced by the environmental fluctuation. The consequent multiple species structures is evolutionary stable at the presence of the fluctuation. We perform the evolutionary invasion analysis for the phenomena and illustrate the mechanisms of the branchings. The results indicate a novel process of increasing the species diversity via evolutionary branching, and the analysis reveals the mechanisims of the branching preocess as the response to the environmental fluctuation. The robustness of the evolutionary process is also discussed.  相似文献   

15.
16.
The main objective of this special section is not to review the broad field of landscape genetics, but to provide a glimpse of how the developing landscape genetics perspective has the potential to change the way we study evolution. Evolutionary landscape genetics is the study of how migration and population structure affects evolutionary processes. As a field it dates back to Sewall Wright and the origin of theoretical population genetics, but empirical tests of adaptive processes of evolution in natural landscapes have been rare. Now, with recent developments in technology, methodology, and modeling tools, we are poised to trace adaptive genetic variation across space and through time. Not only will we see more empirical tests of classical theory, we can expect to see new phenomena emerging, as we reveal complex interactions among evolutionary processes as they unfold in natural landscapes.  相似文献   

17.
Whether evolutionary change can occur by genetic assimilation, or more generally by genetic accommodation, remains controversial. Here we examine some of the experimental evidence for both phenomena. Several experiments in Drosophila suggest that assimilation is possible, and a new paper shows that a color polyphenism in the tobacco hornworm, Manduca sexta, can evolve by genetic accommodation. We argue that genetic accommodation, including assimilation, is a plausible mechanism in evolution; however, more work is required to test how this mechanism acts and how often it is involved in evolutionary change.  相似文献   

18.
Ecological annotation of genes and genomes through ecological genomics   总被引:1,自引:1,他引:0  
Ecological genomics is a research field that aims to determine how a genome or a population of genomes interacts with its environment across ecological and evolutionary timescales. This matter was the central theme of the symposium on Ecological Genomics that took place at the First meeting of the Canadian Society for Ecology and Evolution, held at the University of Toronto in May 2007. Through their research on a diverse array of organisms, the various speakers illustrated how ecology and evolution benefit from genomics, and indirectly how genomics can benefit from evolutionary ecology.  相似文献   

19.
Species distribution models (SDMs) use spatial environmental data to make inferences on species' range limits and habitat suitability. Conceptually, these models aim to determine and map components of a species' ecological niche through space and time, and they have become important tools in pure and applied ecology and evolutionary biology. Most approaches are correlative in that they statistically link spatial data to species distribution records. An alternative strategy is to explicitly incorporate the mechanistic links between the functional traits of organisms and their environments into SDMs. Here, we review how the principles of biophysical ecology can be used to link spatial data to the physiological responses and constraints of organisms. This provides a mechanistic view of the fundamental niche which can then be mapped to the landscape to infer range constraints. We show how physiologically based SDMs can be developed for different organisms in different environmental contexts. Mechanistic SDMs have different strengths and weaknesses to correlative approaches, and there are many exciting and unexplored prospects for integrating the two approaches. As physiological knowledge becomes better integrated into SDMs, we will make more robust predictions of range shifts in novel or non-equilibrium contexts such as invasions, translocations, climate change and evolutionary shifts.  相似文献   

20.
To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号