首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two fluorescent probes, N-carboxymethylisatoic anhydride, which binds to membrane proteins, and 1,6-diphenyl-1,3,5-hexatriene, a lipophilic label, have been used to follow membrane microenvironmental changes. Activation of human platelets by thrombin resulted in a simultaneous increase in values of fluorescence polarization (P) of both probes during the stages of shape change and secretion, which further increased during platelet aggregation. The similar pattern of changes in P for both probes indicates the interdependence of lipids and proteins in the activated platelet membrane.  相似文献   

2.
Measurements of the anisotropy of protein fluorescence as a function of an added collisional quencher, such as acrylamide, are used to construct Perrin plots. For single tryptophan containing proteins, such plots yield an apparent rotational correlation time for the depolarization process, which, in most cases, is approximately the value expected for Brownian rotation of the entire protein. Apparent limiting fluorescence anisotropy values, which range from 0.20 to 0.32 for the proteins studied, are also obtained from the Perrin plots. The lower values for the limiting anisotropy found for some proteins are interpreted as indicating the existence of relatively rapid, limited (within a cone of angle 0 degrees--30 degrees) motion of the tryptophan side chains that is independent of the overall rotation of the protein. Examples of the use of this fluorescence technique to study protein conformational changes are presented, including the monomer in equilibrium dimer equilibrium of beta-lactoglobulin, the monomer in equilibrium tetramer equilibrium of melittin, the N in equilibrium F transition of human serum albumin, and the induced change in the conformation of cod parvalbumin caused by the removal of Ca+2. Because multitryptophan-containing proteins have certain tryptophans that are accessible to solute quencher and others that are inaccessible, this method can be used to determine the steady state anisotropy of each class of tryptophan residues.  相似文献   

3.
4.
An algorithm is presented for the Monte Carlo simulation of the decay of fluorescence polarization from segmentally flexible molecules. Based on the random walk model of Brownian motion, the treatment explicitly follows the stochastic changes in the diffusion coefficients as the molecule bends. It includes the effects of a linear restoring force opposing the bending and the effects of hydrodynamic coupling between the translational, rotational, and bending motions. One application is presented: the simulation of anisotropy decay curves for hinged rods. A variety of decay curves are obtained, including single- and multiexponential behavior, and the following conclusions are reached: (1) increasing the flexibility is usually, but not always, accompanied by a more rapid rate of depolarization; (2) reducing the size of the fluorescent subunit will usually, but not always, increase the rate of depolarization; and (3) the complex interplay between the effects of molecular shape, relative sizes of the subunits, restoring force, and orientation of the transition dipoles renders it unlikely that any simple method can be used to interpret anisotrophy data without simulation. In particular, it is not possible to determine the extent of bending by fitting the data with the two-exponential approximation used by some investigators in the past.  相似文献   

5.
Collagen synthesis, hydroxylation of proline in collagen, and collagen secretion were studied in the contact-inhibited mouse fibroblast line, Balb 3T3; the Kirsten virus transformed line, Ki-3T3; and dibutyryl cAMP (dbcAMP)-treated Ki-3T3 cells, during the various phases of the growth cycle. Transformed cells in both logarithmic and stationary phase produced lower levels of collagen than the parent line but 85-90% of the theoretically possible hydroxyproline residues of the collagen were formed even when ascorbic acid was not added to the culture medium. Moreover, the transformed cells showed only about a 20% increase of collagen secretion upon addition of ascorbate. This was in contrast to the ascorbate requirement for maximal proline hydroxylation and the 2-3 fold stimulation of collagen secretion by ascorbate in the parent Balb 3T3 cells. Although dbcAMP treatment caused Ki-3T3 cells to assume a more normal morphology and increased the relative rate of collagen synthesis to levels similar to that of 3T3, such treatment did not restore an ascorbate requirement for proline hydroxylation or collagen secretion. The specific activity of the enzyme prolyl hydroxylase also was not affected by dbcAMP treatment although collagen synthesis was increased by such treatment. In addition, it was found that ascorbic acid was not effective in activating prolyl hydroxylase derived from Ki-3T3 or dbcAMP-treated Ki-3T3 cell cultures either in logarithmic phase or stationary phase. Ki-3T3 cultures did not accumulate ascorbic acid in cells or medium nor was ascorbic acid synthesized from the precursor 14C-glucuronate in cell homogenates. The results suggest that virally transformed Balb 3T3 cells acquire the capacity to synthesize a reducing cofactor for prolyl hydroxylase and that this function may be related to the increased glycolytic metabolism of these cells since neither cellular metabolism nor ascrobate-independent hydroxylation was altered by treatment with dbcAMP.  相似文献   

6.
Phenotypic reversion of SV40-transformed 3T3 cells by dimethylsulfoxide   总被引:2,自引:0,他引:2  
With dimethylsulfoxide (DMSO) (0.5 to 1.5%) in the medium, SV40-transformed 3T3 cells (SV3T3) changed morphologically from a round to a flat fibroblastic shape. The saturation density of the treated SV3T3 cells decreased and the generation time increased. These cells showed an increased anchorage dependency in soft agar. Hexose uptake by SV3T3 cells was reduced to the level in the parent 3T3 cells and susceptibility of the SV3T3 cells to concanavalin A (con A) also decreased. These phenotypes of transformed cells appeared to change concomitantly from the transformed toward the normal state with the increase of DMSO concentration.  相似文献   

7.
8.
S C Tu  C W Wu  J W Hastings 《Biochemistry》1978,17(6):987-993
The distance between specific sites on bacterial luciferase was estimated by energy transfer. Luciferase was fluorescently labeled by reaction of an essential sulfhydryl group with N-(1-pyrene)maleimide and N-[p-(2-benzoxazolyl)phenyl]meleimide. Both of the modified enzymes bind 8-anilino-1-naphthalenesulfonate (Ans) with affinities similar to that exhibited by the native luciferase. Using each of the two fluorescent probes as a donor and the bound Ans as an acceptor, the energy transfer efficiencies were determined by the resulting enhancement of fluorescence of the acceptor. The corresponding distance was calculated to be in the range of 21 to 37 A. Energy-transfer studies were also carried out using fluorescence lifetime measurements of bound ANS, acting as a donor with bound FMN as an acceptor. The corresponding distance was calculated to be between 30 and 58 A. Using samples of luciferase:Ans complex and luciferase modified with N-(1-pyrene)maleimide, the rotational correlation time of the enzyme-dye conjugate as awhole was found to be 47 +/- 2 ns. The observed rotational correlation time is much longer than that calculated for luciferase assuming a spherical structure, thus indicating an elongated form for the luciferase-dye conjugate.  相似文献   

9.
The time-resolved fluorescence characteristics of tryptophan in flavodoxin isolated from the sulfate-reducing bacteria Desulfovibrio vulgaris and Desulfovibrio gigas have been examined. By comparing the results of protein preparations of normal and FMN-depleted flavodoxin, radiationless energy transfer from tryptophan to FMN has been demonstrated. Since the crystal structure of the D. vulgaris flavodoxin is known, transfer rate constants from the two excited states 1 L a and 1 L b can be calculated for both tryptophan residues (Trp 60 and Trp 140). Residue Trp 60, which is very close to the flavin, transfers energy very rapidly to FMN, whereas the rate of energy transfer from the remote Trp 140 to FMN is much smaller. Both tryptophan residues have the indole rings oriented in such a way that transfer will preferentially take place from the 1 L a excited state. The fluorescence decay of all protein preparations turned out to be complex, the parameter values being dependent on the emission wavelength. Several decay curves were analyzed globally using a model in which tryptophan is involved in some nanosecond relaxation process. A relaxation time of about 2 ns was found for both D. gigas apo- and holoflavodoxin. The fluorescence anisotropy decay of both Desulfovibrio FMN-depleted flavodoxins is exponential, whereas that of the two holoproteins is clearly non-exponential. The anisotropy decay was analyzed using the same model as that applied for fluorescence decay. The tryptophan residues turned out to be immobilized in the protein. A time constant of a few nanoseconds results from energy transfer from tryptophan to flavin, at least for D. gigas flavodoxin. The single tryptophan residue in D. gigas flavodoxin occupies a position in the polypeptide chain remote from the flavin prosthetic group. Because of the close resemblance of steady-state and time-resolved fluorescence properties of tryptophan in both flavodoxins, the center to center distance between tryptophan and FMN in D. gigas flavodoxin is probably very similar to the distance between Trp 140 and FMN in D. vulgaris flavodoxin (i.e. 20 Å). Offprint requests to: A.J.W.G. Visser  相似文献   

10.
11.
The first lifetime measurements of DNA fluorescence are reported. Natural and synthetic DNA have been excited by 1.76 ns pulses of synchrotron ultraviolet radiation (270 nm) and the time profile of the fluorescence has been measured by synchronous single-photon counting. A post-pulse exponentially decaying emission has been observed with a lifetime of 2.9 +/- 0.4 ns for calf thymus DNA and 3.0 +/- 0.3 ns for poly(dA-T); this is most likely an excimer fluorescence.  相似文献   

12.
Hepatoma up-regulated protein (HURP) is a recently identified novel cell-cycle-regulated gene. The HURP gene is overexpressed in human hepatocellular carcinoma and transitional cell carcinoma. The cellular function of HURP is not fully understood. In this study, the NIH3T3 cells transduced with the exogenous HURP gene manifested the general characteristics of tumor cells, which had higher growth rate in low-serum media and advanced ability of colony formation on agarose-based plates. Transduced HURP was capable of specifically enhancing the chemosensitivity of deoxycytosine analogs, such as gemcitabine, ARA-C, and 5-AZA-CdR, but neither had an effect on the response of DNA intercalating agents, such as cisplatin, carboplatin, and doxorubicin, nor on the response of microtubule stabilizers, such as paclitaxel, docetaxel, and vinblastine. These results indicate that the HURP gene might be a potential oncogenic gene and capable of enhancing the chemosensitivity of deoxycytosine analogs in NIH3T3 cells.  相似文献   

13.
DNA fragments (0.5-4.5 kb) of normal human lymphocytes induced pre-neoplastic mouse NIH/3T3 cells after transfection to grow in soft agar medium at low efficiency (0.0007 colonies/micrograms DNA/10(6) cells). In secondary transfections high mol. wt. DNA (greater than 20 kb) of cells transformed by DNA fragments induced neoplastic transformation with high efficiency (0.16-1.1 soft agar colonies/micrograms DNA/10(6) cells). These results confirm previous data obtained by others with chicken and mouse donor DNA. We describe here that independent secondary transformants harbored human Alu repetitive DNA sequences on similar restriction fragments and formed progressively growing tumors in BALB/c mice or nude mice. The corresponding primary transformants were not tumorigenic, however, and the ability to proliferate in semi-solid agar medium was gradually lost when the cells were grown as non-confluent monolayers. Furthermore, in contrast to secondary transformants, DNA from primary transformants showed only relatively weak hybridization to a human Alu repetitive DNA probe. We conclude that in primary transformants the transformed phenotype is expressed in an unstable fashion whereas secondary transformants appear to be stably transformed.  相似文献   

14.
Cytoskeleton alterations of NIH/3T3 fibroblast monolayers transfected with Ha-ras-activated oncogene were studied by immunofluorescence, immunoelectron microscopy, and immunoelectrophoretic analysis of actin isoforms. Transformation foci were found to consist of cells with a round shape and rare stress fibers that spread sparsely, forming rare focal contacts and fibronexuses. The loss of stress fibers in transformed cells was confirmed by staining with rhodamine-phalloidin and with a fluorescinated anti-non-muscle cell actin antibody. The transformed cells were anchored to the substrate prominently by filaments that contained fibronectin, as showed by immunoelectron microscopy. A down-regulation of alpha-actin isoform was observed by immunofluorescence and immunoblotting analysis using a specific monoclonal antibody. The diffuse distribution of alpha-actin, lacking a specific association with stress fibers, challenges the hypothesis of a connection between alpha-actin down-regulation and stress fiber loss.  相似文献   

15.
Three major pools of heparan sulfate have been isolated from cultures of Swiss mouse 3T3 and SV40-transformed 3T3 cells: cell-surface, medium, and intracellular heparan sulfates. The cell-surface heparan sulfate is a high molecular weight proteoglycan which is partially degraded by pronase. Before pronase treatment, it has a peak molecular weight (as estimated by gel filtration) of approx. 7.2 . 10(5) in contrast to only 2.4 . 10(5) after pronase treatment. The medium heparan sulfate appears to be similar in structure to the cell-surface heparan sulfate, since they coelute on Bio-Gel A-15m and DEAE-cellulose, and are both proteoglycans. In contrast, the intracellular heparan sulfate has a low molecular weight (6.0 . 10(3)) and has little if any attached protein. Both the medium and intracellular heparan sulfate exhibit the transformation-associated change in structure reported earlier for cell-surface heparan sulfate (Underhill, C.B. and Keller, J.M. )1975) Biochem. Biophys. Res. Commun. 63, 448--454). This transformation-associated change, detected by DEAE-cellulose chromatography is not the result of changes in either molecular weight or protein core. Cellulose acetate electrophoresis of the cell-surface heparan sulfate at pH 1 suggests that the transformation-associated change in structure is due to a difference in sulfate content. Both types of heparan sulfate are produced in mixed cultures of 3T3 and SV3T3 cells, indicating that neither serum factors in the culture medium nor secreted cell products are responsible for the transformation-associated change in heparan sulfate structure. The presented data are discussed with respect to the postulated role of heparan sulfate in cell social behavior.  相似文献   

16.
Actin associated with membranes from 3T3 mouse fibroblast and HeLa cells   总被引:10,自引:15,他引:10       下载免费PDF全文
A protein component of membranes isolated from 3T3 mouse fibroblasts and HeLa cells has been identified as actin by peptide mapping. Extensive but apparently not total coincidence was found between the peptide maps of these two nonmuscle membrane-associated actins compared to chick skeletal muscle actin. Between 2 and 4 percent of the total membrane protein appears in the actin band on sodium dodecyl sulfate polyacrylamide gels of 3T3 membranes while about 4 percent of the membrane protein appears as the actin band from HeLa membranes. These values represent approximately the same proportion of actin to total protein found in the cell homogenates. Treatment of intact cells with levels of cytochalasin B sufficient to cause pronounced morphological changes did not change the amount of actin associated with the membrane in either 3T3 or HeLa cells. However, incubation of isolated membranes under conditions favoring conversion of actin from filamentous to monomeric form resulted in dissociation of approximately 80 and 60 percent of the actin from 3T3 and HeLa membranes, respectively. Thus, approximately 20 percent of 3T3 membrane actin and 40 percent of HeLa membrane actin remained associated with the membrane even under actin depolymerizing conditions.  相似文献   

17.
Transfection of the plasmid containing the cloned gag-myc part of retrovirus MC 29 into mouse NIH 3T3 cells induces focuses of morphological transformation. Isolated morphological transformants have a decreased dependence on serum growth factors, a higher saturation density in monolayer, and an increased cloning efficiency on the glass and in agar. Induced traits are stably inherited, and may constitute the direct consequence of stable maintenance and expression of transfected oncogens.  相似文献   

18.
19.
Three major pools of heparan sulfate have been isolated from cultures of Swiss mouse 3T3 and SV40-transformed 3T3 cells: cell-surface, medium, and intracellular heparan sulfates. The cell-surface heparan sulfate is a high molecular weight proteogylcan which is partially degraded by pronase. Before pronase treatment, it has a peak molecular weight (as estimated by gel filtration) of appox. 7.2 · 105 in contrast to only 2.4 · 105 after pronase treatment. The medium heparan sulfate appears to be similar in structure to the cell-surface heparan sulfate, since they coelute on Bio-Gel A-15m and DEAE-cellulose, and are both proteoglycans. In contrast, the intracellular heparan sulfate has a low molecular weight (6.0 · 103) and has little if any attached protein. Both the medium and intracellular heparan sulfate exhibit the transformation-associated change in structure reported earlier for cell-surface heparan sulfate (Underhill, C.B. and Keller, J.M. (1975) Biochem. Biophys. Res. Commun. 63, 448–454). This transformation-associated change, detected by DEAE-cellulose chromatography is not the result of changes in either molecular weight or protein core. Cellulose acetate electrophoresis of the cell-surface heparan sulfate at pH 1 suggests that the transformation-associated change in structure is due to a difference in sulfate content. Both types of heparan sulfate are produced in mixed cultures ot 3T3 and SV3T3 cells, indicating that neither serum factors in the culture medium nor secreted cell products are responsible for the transformation-associated change in heparan sulfate structure. The presented date are discussed with respect to the postulated role of heparan sulfate in cell social behavior.  相似文献   

20.
The relative amount of sulfated glycosaminoglycans associated with the cell layer of parent and SV40-transformed Swiss mouse 3T3 cells was determined from the incorporation of labeled sulfate (35SO4) into macromolecular material. In cultures of SV40-transformed cells, the glycosaminoglycan content per cell was constant over a wide range of densities. In cultures of parent 3T3 cells, the glycosaminoglycan content per cell increased directly with density, the highest values being found in contact-inhibited cultures. At high cell densities, the glycosaminoglycan content of 3T3 cells was several-fold higher than that for SV40-transformed cells. Most of the density-dependent increase in glycosaminoglycans of 3T3 cells was accounted for by chondroitin sulfate (dermatan sulfate) which was over 6-fold higher in confluent cultures than in low density cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号