首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of ribosomal proteins with mRNA in the 40S initiation complex was examined by chemical cross-linking. 40S initiation complexes were formed by incubating rat liver [(3)H]Met-tRNAi, rat liver 40S ribosomal subunits, rabbit globin mRNA, and partially purified initiation factors of rabbit reticulocytes in the presence of guanylyl(beta, gamma-methylene)-diphosphonate. The initiation complexes were then treated with 1,3-butadiene diepoxide to introduce crosslinks between the mRNA and proteins. The covalent mRNA-protein conjugates were isolated by chromatography on an oligo(dT) cellulose column in the presence of sodium dodecyl sulfate, followed by sucrose density gradient centrifugation. Proteins cross-linked to the mRNA were labeled with Na(125)I, extracted by extensive ribonuclease digestion, and analyzed by two-dimensional and diagonal polyacrylamide gel electrophoresis. Three ribosomal proteins, S6, S8, and S23/S24, together with small amounts of S3/S3a, S27, and S30, were identified as the protein components cross-linked to the globin mRNA protein complex, and were shown to attach directly to the mRNA. It is suggested that these proteins constitute the ribosomal binding site for mRNA in the 40S initiation complex.  相似文献   

2.
In the quaternary initiation complex, eIF-2.GMPPCP.Met-tRNAf.40S ribosomal subunit, the Met-tRNAf can be cross-linked to the beta subunit of initiation factor eIF-2 as well as to ribosomal proteins S3a and S6 by treatment with the bifunctional reagent, diepoxybutane. Using 40S subunits, modified in advance with the heterobifunctional reagent, methyl-rho-azido-benzoylaminoacetimidate, Met-tRNAf is covalently bound to the same ribosomal proteins (S3a and S6) upon irradiation of the complex with ultraviolet light. Under both conditions proteins S3a and S6, together with a limited number of other ribosomal proteins, are covalently bound to 18S ribosomal RNA.  相似文献   

3.
Complexes of 30 S subunits and [14C]IF3 were allowed to react with the protein cross-linking reagents, N,N′-p-phenylenedimaleimide or dimethylsuberimidate. Non-cross-linked IF3 was removed from the complex by centrifugation in a buffer containing a high salt concentration, and the total protein was extracted from the pelleted particles. The mixture of cross-linked products was analyzed by radioimmunodiffusion with antisera prepared against all of the individual 30 S ribosomal proteins. Radioactivity was found in the precipitin bands formed with antisera against ribosomal proteins S1, S11, S12, S13, S19 and S21. The results show that IF3 was present in covalent cross-linked complexes containing those 30 S ribosomal proteins and imply that they comprise or are near the binding site for initiation factor IF3.  相似文献   

4.
The binding site for eIF-3 on the small ribosomal subunit was studied (a) by use of a complex of eIF-3 and derived 40 S ribosomal subunit from rat liver, and (b) by use of native small ribosomal subunits from rabbit reticulocytes. After treatment of both complexes with dimethyl 4,7-dioxo-5,6-dihydroxy-3,8-diazadecanbisimidate ribosomal proteins S3a, S4, S6, S7, S8, S9, S10, S23/24 and S27 became covalently linked to eIF-3 and were isolated together with the factor by gradient centrifugation. The ribosomal proteins were identified by two-dimensional polyacrylamide gel electrophoresis after periodate cleavage of the link(s).  相似文献   

5.
2',3'-O-(4-[N-(2-chloroethyl)-N-methylamino]) benzylidene derivative of AUGU6 was used for identification of the proteins in the region of the mRNA-binding centre of E. coli ribosomes. This derivative alkylated ribosomes (preferentially 30S ribosomal) with high efficiency within the 70S initiation complex. In both 30S and 50S ribosomal subunits proteins and rRNA were modified. Specificity of the alkylation of ribosomal proteins and rRNA with the reagent was proved by the inhibitory action of AUGU6. Using the method of two-dimensional electrophoresis in polyacrylamide gel the proteins S4, S12, S13, S14, S15, S18, S19 and S20/L26 which are labelled by the analog of mRNA were identified.  相似文献   

6.
L A Brewer  S Goelz  H F Noller 《Biochemistry》1983,22(18):4303-4309
We have used the reversible, bifunctional reagent ethylene glycol bis[3-(2-ketobutyraldehyde) ether] to cross-link RNA to protein within intact ribosomal subunits from Escherichia coli. Here we describe the synthesis of this compound (termed bikethoxal) and demonstrate its ability to form covalent attachments between RNA and protein in the 5S RNA-L18 complex and within 30S and 50S ribosomal subunits. The reagent is a symmetrical dicarbonyl compound and reacts with guanine in single-stranded RNA and with arginine in protein. RNA-protein cross-links generated with this reagent are stable, as demonstrated by the comigration of 35S-labeled ribosomal proteins with ribosomal RNA on neutrally buffered sodium dodecyl sulfate (SDS)-agarose gels. However, the cross-linked product is unstable in mildly basic conditions, allowing the identification of the linked macromolecules by conventional techniques. The reagent is potentially capable of cross-linking any combination of single-stranded RNA, single-stranded DNA, or protein; it should prove a useful probe of the RNA-protein proximities within the E. coli ribosome, since the SDS-agarose gel system we describe provides a rapid method of optimizing this RNA--protein cross-linking reaction.  相似文献   

7.
We have used an in vitro translation initiation assay to investigate the requirements for the efficient transfer of Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA (or an AUG codon) to form the 40 S preinitiation complex. We observed that the 17-kDa initiation factor eIF1A is necessary and sufficient to mediate nearly quantitative transfer of Met-tRNAf to isolated 40 S ribosomal subunits. However, the addition of 60 S ribosomal subunits to the 40 S preinitiation complex formed under these conditions disrupted the 40 S complex resulting in dissociation of Met-tRNAf from the 40 S subunit. When the eIF1A-dependent preinitiation reaction was carried out with 40 S ribosomal subunits that had been preincubated with eIF3, the 40 S preinitiation complex formed included bound eIF3 (40 S.eIF3. Met-tRNAf.eIF2.GTP). In contrast to the complex lacking eIF3, this complex was not disrupted by the addition of 60 S ribosomal subunits. These results suggest that in vivo, both eIF1A and eIF3 are required to form a stable 40 S preinitiation complex, eIF1A catalyzing the transfer of Met-tRNAf.eIF2.GTP to 40 S subunits, and eIF3 stabilizing the resulting complex and preventing its disruption by 60 S ribosomal subunits.  相似文献   

8.
The hypothesis of an adjustment of the mRNA in its ribosomal channel under the influence of the initiation factors has been tested by site-directed crosslinking experiments. Complexes containing 30S subunits with bound mRNA having 4-thio-uracil at specific positions were prepared in the presence or absence of initiation factors and/or fMet-tRNA and subjected to UV irradiation to obtain specific crosslinks of the radioactively labeled mRNA with bases of the 16S rRNA and with ribosomal proteins. The subsequent identification of the specific sites of both mRNA and rRNA and individual ribosomal proteins involved in the crosslinking, obtained under different conditions of complex formation, provide direct evidence for the occurrence of a partial relocation of the mRNA on the 30S ribosomal subunits under the influence of the factors. The nature of this mRNA relocation is compatible with our previous proposal of a shift of the template from an initial ribosomal "stand-by site" to a second site closer to that occupied when the initiation triplet of the mRNA is decoded in the P-site.  相似文献   

9.
epsilon-Amino groups of lysines of 30 S ribosomal subunits with affinity for phosphate groups were selectively modified in situ by reaction with pyridoxal phosphate and reduction of the Schiff base with nonradioactive or radioactive sodium borohydride. This reaction modified only a limited number of ribosomal proteins and resulted in the loss of only some 30 S activities. The modified proteins were identified and the extent of their modification determined. The main targets of the reaction were S3 greater than S1 greater than S6. The activity most severely affected by the pyridoxal phosphate reaction was mRNA-dependent aminoacyl-tRNA binding. Some inhibition of poly(U) binding was also observed, while neither binding of initiation factors nor association with 50 S subunits was inhibited. The inhibition of aminoacyl-tRNA binding showed distinct selectivity: the inhibition was far greater with NAcPhe-tRNA than with fMet-tRNA and with "A" site than with "P" site binding. In addition, initiation complex formation with some mRNAs (e.g. MS2 RNA) was affected more than with others (e.g. T7 early mRNA). Ribosome reconstitution experiments showed that the modification of protein S3 was the primary cause of the inhibition; a role was also played by ribosomal proteins S1, S2, and S21. Substrate protection experiments showed that the 30 S activity can be protected from pyridoxal phosphate inactivation upon formation of a ternary complex with poly(U) and tRNAPhe or NAcPhe-tRNAPhe. Accordingly, the extent of modification of ribosomal protein S3 was reduced in the ternary complex while modification of S1 was reduced in the presence of poly(U) alone.  相似文献   

10.
Initiation factor eIF-3 from rat liver forms a binary complex with the small ribosomal subunit. Within this complex, 18S ribosomal RNA can be cross-linked to the 66 000 dalton subunit of eIF-3 by treating the complex with a short bifunctional reagent, diepoxybutane, with a distance of 4A between the reactive groups. In binary complexes containing eIF-3 premodified with the heterobifunctional reagent, methyl-p-azido-benzoylaminoacetimidate (10A), the 66 000 dalton subunit of eIF-3 became covalently bound to 18S rRNA after irradiation of the complex with ultraviolet light. The involvement of only one of the eight eIF-3 subunits in the formation of the covalent RNA-protein complexes indicates a highly specific interaction between 18S rRNA and eIF-3 at the attachment site of the factor on the 40S subunit.  相似文献   

11.
Translation initiation factor 3 (IF-3) was bound noncovalently to Escherichia coli 50S ribosomal subunits. Irradiation of such complexes with near-ultraviolet light (greater than 285 nm) resulted in covalent attachment of initiation factor 3 to the 50S subunit. Photo-cross-linking attained its maximum level of 40% of that which was noncovalently bound after 90 min of irradiation. Cross-linking was abolished in the presence of either 0.5 M NH4C1 or 0.25 mM aurintricarboxylic acid, indicating that specific binding of initiation factor 3 to the ribosome was a prerequisite for subsequent covalent attachment. Further analysis showed that all the IF-3 was covalently bound to a small number of 50S subunit proteins. The major cross-linked proteins were identified as L2, L7/L12, L11, and L27 by immunochemical techniques. These results are discussed in light of the proposed mechanism for IF-3 function.  相似文献   

12.
Complexes of purified 40S ribosomal subunits and initiation factor 3 from rabbit reticulocytes were crosslinked using the reversible protein crosslinking reagent, 2-iminothiolane, under conditions shown previously to lead to the formation of dimers between 40S proteins but not higher multimers. The activity of both the 40S subunits and initiation factor 3 was maintained. Protein crosslinked to the factor was purified by sucrose density gradient centrifugation following nuclease digestion of the ribosomal subunit: alternatively, the total protein was extracted from 40S: factor complexes. The protein obtained by either method was analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Ribosomal proteins were found in multimeric complexes of high molecular weight due to their crosslinking to components of eIF3. Identification of the ribosomal proteins appearing below the diagonal was accomplished by elution, radioiodination, two-dimensional polyacrylamide/urea gel electrophoresis, and radioautography. Proteins S2, S3, S3a, S4, S5, S6, S8, S9, S11, S12, S14, S15, S16, S19, S24, S25, and S26 were identified. Because many of the proteins in this group form crosslinked dimers with each other, it was impossible to distinguish proteins directly crosslinked to eIF3 from those crosslinked indirectly through one bridging protein. The results nonetheless imply that the 40S ribosomal proteins identified are at or near the binding site for initiation factor 3.  相似文献   

13.
Zinc finger-like motifs in rat ribosomal proteins S27 and S29.   总被引:5,自引:1,他引:4       下载免费PDF全文
The primary structures of the rat 40S ribosomal subunit proteins S27 and S29 were deduced from the sequences of nucleotides in recombinant cDNAs and confirmed by determination of amino acid sequences in the proteins. Ribosomal protein S27 has 83 amino acids and the molecular weight is 9,339. Hybridization of cDNA to digests of nuclear DNA suggests that there are 4-6 copies of the S27 gene; the mRNA for the protein is about 620 nucleotides in length. Ribosomal protein S29 has 55 amino acids and the molecular weight is 6,541. There are 14-17 copies of the S29 gene and its mRNA is about 500 nucleotides in length. Rat ribosomal protein S29 is related to several members of the archaebacterial and eubacterial S14 family of ribosomal proteins. S27 and S29 have zinc finger-like motifs as do other proteins from eukaryotic, archaebacterial, eubacterial, and mitochondrial ribosomes. Moreover, ribosomes and ribosomal subunits appear to contain zinc and iron as well.  相似文献   

14.
15.
Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA(3) to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA(3) pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A(3) assembly factors and for proper assembly of the neighborhoods containing domains I and II.  相似文献   

16.
The cDNAs for the human ribosomal proteins S3, S5, S10, S19, and S26 were introduced into a pET-15b vector and recombinant proteins containing an N-(His)(6)-fusion tag were expressed in high yields. To resolve the problem of frameshift during expression of S26 caused by the presence of tandem arginine codons in its mRNA that are rare in Escherichia coli, we substituted the rare AGA codon with the more frequent arginine codon (CGC) using a primer with this mutation for PCR amplification of S26 cDNA. All proteins were expressed mainly in the form of inclusion bodies and purified to homogeneity by metal affinity chromatography in one step (except for S3). Expression of the full-length S3 was accompanied by the formation of a low molecular weight polypeptide that was co-purified with S3 by metal affinity chromatography. Complete purification of S3 required an additional gel-filtration step. The proteins were refolded by stepwise dialysis. Both identity and purity of the proteins were confirmed by 2D PAGE. The proteins obtained could be used in a wide range of applications in biophysics, biochemistry, and molecular biology.  相似文献   

17.
Eukaryotic initiation factor 3 (eIF3) is a 12-subunit protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 40 S initiation complex. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. To learn more about the structure and function of eIF3 we have expressed and purified individual human eIF3 subunits or complexes of eIF3 subunits using baculovirus-infected Sf9 cells. The results indicate that the subunits of human eIF3 that have homologs in Saccharomyces cerevisiae form subcomplexes that reflect the subunit interactions seen in the yeast eIF3 core complex. In addition, we have used an in vitro 40 S ribosomal subunit binding assay to investigate subunit requirements for efficient association of the eIF3 subcomplexes to the 40 S ribosomal subunit. eIF3j alone binds to the 40 S ribosomal subunit, and its presence is required for stable 40 S binding of an eIF3bgi subcomplex. Furthermore, purified eIF3 lacking eIF3j binds 40 S ribosomal subunits weakly, but binds tightly when eIF3j is added. Cleavage of a 16-residue C-terminal peptide from eIF3j by caspase-3 significantly reduces the affinity of eIF3j for the 40 S ribosomal subunit, and the cleaved form provides substantially less stabilization of purified eIF3-40S complexes. These results indicate that eIF3j, and especially its C terminus, play an important role in the recruitment of eIF3 to the 40 S ribosomal subunit.  相似文献   

18.
We have used rapid probing methods to follow the changes in reactivity of residues in 16 S rRNA to chemical and enzymatic probes as ribosomal proteins S2, S3, S10, S13 and S14 are assembled into 30 S subunits. Effects observed are confined to the 3' major domain of the RNA and comprise three general classes. (1) Monospecific effects, which are attributable to a single protein. Proteins S13 and S14 each affect the reactivities of different residues which are adjacent to regions previously found protected by S19. S10 effects are located in two separate regions of the domain, the 1120/1150 stem and the 1280 loop; both of these regions are near nucleotides previously found protected by S9. Both S2 and S3 protect different nucleotides between positions 1070 and 1112. In addition, S2 protects residues in the 1160/1170 stem-loop. (2) Co-operative effects, which include residues dependent on the simultaneous presence of both proteins S2 and S3 for their reactivities to appear similar to those observed in native 30 S subunits. (3) Polyspecific effects, where proteins S3 and S2 independently afford the same protection and enhancement pattern in three distal regions of the domain: the 960 stem-loop, the 1050/1200 stem and in the upper part of the domain (nucleotides 1070 to 1190). Proteins S14 and S10 also weakly affect the reactivities of several residues in these regions. We believe that several of the protected residues of the first class are likely sites for protein-RNA contact while the third class is indicative of conformational rearrangement in the RNA during assembly. These results, in combination with the results from our previous study of proteins S7, S9 and S19, are discussed in terms of the assembly, topography and involvement in ribosomal function of the 3' major domain.  相似文献   

19.
Monospecific polyclonal antibodies against seven proteins of the 40 S subunit of rat liver ribosomes were used to identify ribosomal proteins involved in interaction with initiation factor eIF-2 in the quaternary initiation complex [eIF-2 X GMPPCP X [3H]Met-tRNAf X 40 S ribosomal subunit]. Dimeric immune complexes of 40 S subunits mediated by antibodies against ribosomal proteins S3a, S13/16, S19 and S24 were found to be unable to bind the ternary initiation complex [eIF-2 X GMPPCP X [3H]Met-tRNAf]. In contrast, 40 S dimers mediated by antibodies against proteins S2, S3 and S17 were found to bind the ternary complex. Therefore, from the ribosomal proteins tested, only proteins S3a, S13/16, S19 and S24 are concluded to be involved in eIF-2 binding to the 40 S subunit.  相似文献   

20.
We report the purification of four proteins from Escherichia coli that stimulate or inhibit inter- and/or intramolecular recombination promoted by the yeast plasmid-encoded FLP protein. The proteins are identified as the ribosomal proteins S3 (27 kDa), L2 (26 kDa), S4 (24 kDa), and S5 (16 kDa), on the basis of N-terminal sequence analysis. The S3 protein is found to be identical to H protein, an E. coli histone-like protein that is related to histone H2A immunologically and by virtue of amino acid content. The H protein/S3 identity is based on co-migration on polyacrylamide gels, heat stability, amino acid analysis, and effects on FLP-promoted recombination. These results are relevant to current studies on the structure of the E. coli nucleoid. Since the H protein has previously been found associated with the E. coli nucleoid, the results indicate that either (a) some ribosomal proteins serve a dual function in E. coli, or, more likely, (b) ribosomal proteins can and are being mis-identified as nucleoid constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号