首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the interaction of the day length, cytokinins, and gibberellins in the control of tuberization in potato (Solanum tuberosum L, cv. Desire) plants and derived transgenic plants with the inserted PHYB gene from Arabidopsis encoding the synthesis of phytochrome B apoprotein and put under the control of the 35S CaMV promoter. Plantlets were cultured in vitro on hormone-free MS medium containing 5% sucrose and kinetin (1 mg/l) or/and GA (0.5 and 1.0 mg/l), at long day (LD, a 16-h photoperiod), short day (SD, a 10-h photoperiod), or continuous darkness conditions. The content of cytokinins (Ck, zeatin, and zeatin riboside) in various plant organs was determined by the immunoenzyme method, and GA activity was measured in bioassay with dwarf pea. Potato plant transformation with the PHYB gene enhanced substantially tuber initiation inhibition by LD. Kinetin addition to culture medium enhanced tuberization and reduced Ck content in aboveground shoots and Ck redistribution in the favor of underground organs. GA addition to the culture medium suppressed tuberization and induced Ck accumulation in aboveground organs. We concluded that Ck role in tuberization depends on their predominant localization in above- or underground potato organs. The involvement of Ck and GA in the competitive relations between growing tubers and shoots is considered.  相似文献   

2.
Trichosanthes kirilowii Maxim. is a climbing herb with considerable medicinal value. In this study, efficient protocols for callus-mediated regeneration and in vitro tuberization of this plant were developed. Sterilized stem and leaf tissues were cultured on Murashige and Skoog (MS) medium with plant growth regulators (PGRs), and additives that promoted callus induction and regeneration. Both stem and leaf tissues showed the best response (100%) for callus initiation on MS medium supplemented with 4.5-μM 2,4-dichlorophenoxyacetic acid (2,4-D). Efficient shoot organogenesis was obtained by exposing the callus tissue to 4.6-μM kinetin, 2.2-μM 6-benzylaminopurine, and 2.7-μM 1-naphthylacetic acid (NAA) along with 12.6-μM copper sulfate, which yielded a shoot regeneration rate of 85.5% and 28 shoots derived from each callus. In vitro shoots were best rooted on half-strength (1/2) MS medium with 2.7-μM NAA. Tuberous roots were efficiently induced on rooting medium with 5% (w/v) sucrose under short illumination conditions (8 h photoperiod). Rooted plantlets were successfully acclimatized in pots with a >?90% survival rate. This protocol provides an effective method for callus-mediated regeneration and in vitro root tuberization.  相似文献   

3.
4.
5.
Somatic embryogenesis (SE) of Cyathea delgadii presents a model system for investigating the mechanisms associated with the acquisition of embryogenic competence by single epidermal cells of stipe explants cultured on plant growth regulator-free medium. The present work reveals relationship between endogenous hormone and sugar content in the process of early SE in C. delgadii. By comparing two types of initial explants, i.e. incapable (non-etiolated) and capable (etiolated) of SE, it was established that in etiolated explants, the glucose, fructose, sucrose, and abscisic acid (ABA) contents diminished, but indole-3-acetic acid (IAA) and cytokinins (CKs; i.e. cis/trans zeatin, cis/trans-zeatin riboside, kinetin, kinetin riboside, isopentenyladenosine) contents increased. The ratios between phytohormones revealed that a high concentration of ABA is the main factor inhibiting SE induction. Because of explant excision, a dramatic reduction in concentration of all phytohormones studied was observed, but hormonal balance and sugar content remained almost unchanged. During the 14-day-long culture, the ABA/CKs and ABA/IAA ratios remained constant, whereas the greatest differences were detected for the IAA/CKs and Z-type/iPA cytokinin ratios. Excluding day 6 of culture, cytokinins were found to be the predominant phytohormones over IAA. An almost 12-fold increase in soluble sucrose concentration at day 6 of culture might be the switch to the SE expression phase. Frequent cell divisions leading to somatic embryo formation are clearly associated with increase in trans-zeatin riboside content.  相似文献   

6.
The effect of hydrogen peroxide treatment on the salt tolerance of wild-type Arabidopsis thaliana L. plants (Col-0) and plants transformed with the bacterial salicylate hydroxylase gene (NahG) was studied. The base tolerance to salt stress caused by 200 mM of NaCl in solution culture was higher in plants with the NahG genotype in comparison with the wild-type plants. Growth inhibition was observed for wild-type plants under the action of exogenous hydrogen peroxide, which was not observed for the NahG transformants; salt tolerance increased in the both types of plants after treatment, which was assessed based on the growth indicators and the ability to preserve the chlorophyll pool following NaCl treatment. The content of endogenous Н2О2 in the leaves of wild-type plants increased significantly following exogenous hydrogen peroxide treatment and salt stress, while it practically did not change in the leaves of the NahG genotype. The SOD activity increased in both genotypes after treatment with exogenous hydrogen peroxide, and remained at an elevated level after salt stress in comparison with the nontreated plants. Furthermore, the catalase activity increased in leaves of the salicylate-deficient genotype but not in the Col-0 genotype. The guaiacol peroxidase activity increased in plants of both genotypes under the action of hydrogen peroxide and salt stress, with the NahG plants demonstrating a higher degree of increase. The Н2О2 treatment facilitated the increase of the proline content in leaves of the plants of both genotypes under conditions of salt stress. It was concluded that there were hydrogen peroxide signal transduction pathways in Arabidopsis plants that were salicylic acid independent and that the antioxidant system functioned more effectively in salicylate-deficient Arabidopsis plants.  相似文献   

7.
Stem cuttings were produced from Solanum tuberosum L., cv. Desiree, plants and their transgenic forms harboring rolB and rolC genes from Agrobacterium rhizogenes. Plants were cultured on hormone-free Murashige and Skoog nutrient medium (MS) and on MS supplemented with IAA or kinetin. In microtubers developed on these cuttings, we estimated the content of starch and the number and size of starch granules. Expression of rol genes changed these indices: in tubers of rolC transformants, a greater number of small granules were produced, whereas in tubers of rolB transformants, a fewer number of large granules were developed as compared with wild-type plants. Expression of rol genes did not affect starch content during the first three weeks of cutting culturing but increased it by 15–30% in five-week-old tubers. IAA addition to MS medium increased starch content and the size of starch granules in control plants and rolB tubers by 10–30%, whereas kinetin did not exert any significant influence. The effects of rol transgenes on the initiation and termination of starch granule development are discussed.  相似文献   

8.
9.
10.
Cold stress is one of the major limitations to crop productivity worldwide. We investigated the effects of multiple gene expression from cold tolerant Capsella bursa-pastoris in transgenic tobacco (Nicotiana tabaccum) plants. We combined CblCE53 and CbCBF into a reconstruct vector by isocaudomers. Plant overexpression of CbICE53 under the stress inducible CbCOR15b promoter and CbCBF under a constitutive promoter showed increased tolerance to both chilling and freezing temperatures in comparison to wild-type plants, according to the electrolyte leakage and relative water content. The expressions of endogenous cold-responsive genes in transgenic tobacco (NtDREB1, NtDREB3, NtERD10a and NtERD10b) were obviously upregulated under normal and low temperature conditions. These results suggest that the CbICE53 + CbCBF transgenic plants showed a much greater cold tolerance as well as no dwarfism and delayed flowering. Thus they can be considered as a potential candidate for transgenic engineering for cold tolerant tobacco.  相似文献   

11.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

12.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

13.
Abscisic acid (ABA), auxins, and cytokinins (CKs) are known to be closely linked to nitrogen signaling. In particular, CKs control the effects of nitrate availability on plant growth. Our group has shown that treatment with high nitrate concentrations limits root growth and leaf development in maize, and conditions the development of younger roots and leaves. CKs also affect source-sink relationships in plants. Based on these results, we hypothesized that CKs regulate the source-sink relationship in maize via a mechanism involving complex crosstalk with the main auxin indole-3-acetic acid (IAA) and ABA. To evaluate this hypothesis, various CK metabolites, IAA, and ABA were quantified in the roots and in source and sink leaves of maize plants treated with high and normal nitrate concentrations. The data obtained suggest that the cis and trans isomers of zeatin play completely distinct roles in maize growth regulation by a complex crosstalk with IAA and ABA. We demonstrate that while trans-zeatin (tZ) and isopentenyladenine (iP) regulate nitrate uptake and thus control final leaf sizes, cis-zeatin (cZ) regulates source and sink strength, and thus controls leaf development. The implications of these findings relating to the roles of ABA and IAA in plants’ responses to varying nitrate concentrations are also discussed.  相似文献   

14.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

15.
16.
17.
Vacuolar-type H+-ATPase (V-ATPase), a multi-subunit endomembrane proton pump, plays an important role in plant growth and response to environmental stresses. In the present study, transgenic tobacco that overexpressed the V-ATPase c subunit gene from Iris lactea (IrlVHA-c) was used to determine the function of IrlVHA-c. Quantitative PCR analysis showed that IrlVHA-c expression was induced by salt stress in I. lactea roots and leaves. Subcellular localization of green fluorescent protein (GFP) as marker combined with FM4-64 staining showed that the IrlVHA-c-GFP was localized to the endosomal compartment in tobacco cells. Compared with the wild-type, the IrlVHA-c transgenic tobacco plants exhibited greater seed germination rates, root length, fresh weight, and higher relative water content (RWC) of leaves under salt stress. Furthermore, the IrlVHA-c transgenic tobacco leaves have lower stomatal densities and larger stomatal apertures than wild-type. Under salt stress, superoxide dismutase (SOD) activity in the transgenic tobacco was significantly enhanced. Moreover, the level of malondialdehyde (MDA) in the transgenic tobacco was significantly lower than that in wild-type plants under salt stress. Taken together, these results suggested that the IrlVHA-c plays an important role in salt tolerance in transgenic tobacco by influencing stomatal movement and physiological changes.  相似文献   

18.
The rice EMS-derived mutant leaf adaxialized 1 (lad1) was isolated based on its upward rolling leaf phenotype. Besides the adaxially rolled leaf, many other agronomic traits were also compromised in lad1. The rolling trait was characterized by a noticeable alteration of bulliform cells in the adaxial side of the leaves. Map-based cloning showed a single nucleotide substitution in the promoter region of the KAN1 gene in lad1 mutant. Further, over-expressing and CRISPR/cas9-edited knockdown transgenic plants confirmed that KAN1 was responsible for the mutant phenotype of lad1. Yeast two-hybrid and bimolecular fluorescence complementation assay demonstrated that KAN1 can interact with the auxin response factors ARF3, ARF7 and ARF15. Physiologically, the contents of auxin (IAA), abscisic acid (ABA), jasmonic acid (JA) and gibberellin (GA) were all significantly increased in the lad1 mutant. Moreover, the GA3 content dramatically decrease in wild-type, but increased in lad1 under IAA induction. Additionally, the expression levels of several IAA and GA biosynthesis and responsive-related genes and genes involved in leaf polarity determination were altered in lad1. Therefore, we hypothesized that KAN1/ARFs protein complexes act as auxin-dependent regulatory units that play a conserved role in leaf development.  相似文献   

19.
This study describes the development of a micropropagation protocol for Pinguicula vulgaris using cultures initiated from in vitro produced seedlings. P. vulgaris is a carnivorous plant with a northern, disjunctly circumpolar distribution and specific habitat requirements, and is hence becoming increasingly rare. Shoot proliferation was significantly influenced by Murashige and Skoog (MS) macronutrient concentration, showing higher proliferation rates in 1/4MS, but was not affected by the addition of 0.1 mg/L 6-benzyladenine (BA) or zeatin (Zea). The best medium for propagating P. vulgaris was plant growth regulator (PGR) free ¼MS. An average of 7.62 new shoots per initial explant could be obtained after 8 weeks of culture, of which over 79% produced roots during proliferation. Moreover, rooting percentages of 100% were obtained for the initial explants in all the tested media, including media without PGRs. The plantlets were successfully acclimatized to ex vitro conditions, exhibiting normal development.  相似文献   

20.
Cytisus aeolicus Guss. ex Lindl. (Fabaceae family, subfamily Faboideae) is an endangered endemic species of the Aeolian Islands, Sicily. In vitro multiplication of C. aeolicus shoots was described in this work and cell cultures were established from cotyledons and hypocotyls to investigate their potential production of isoflavones. Aseptically germinated seeds, cultivated on LS modified basal medium, gave the initial explants used both to induce axillary propagation and callus cultures. The LS (Linsmaier and Skoog) basal medium, supplemented with 0.1 mg L?1 of 6-benzylaminopurine were used to induce axillary propagation. The callus induction was performed using the basal medium added with 5 mg L?1 2,4-dichlorophenoxy acetic acid and 5 mg L?1 kinetin (control medium). Basal medium was also added with 2000 mg L?1 casein hydrolysate (CH) or 900 mg L?1myo-inositol (MI). C. aeolicus callus cultures on CH and MI media produced an unique compound, the isoflavone genistein 7-O-ß-D-glucopyranoside (genistin), which has not previously been isolated from wild plants. Callus cultures grown on the medium containing myo-inositol produced the greatest amount of genistin. C. aeolicus tissue culture procedures could provide suitable plant material both for germplasm preservation (by micropropagation) and for biotechnological selective isoflavone production (by callus culture).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号