首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The auxin level in the root fragments of carrot cultivated in vitro is inversely related to the auxin-oxidase activity. In the morphological basal region, auxin catabolism is low and, in consequence, auxin content is high. This accumulation of the endogenous auxin leads to the induction of callus. In such new tissues, IAA-oxidase activity is also very low and, similarly, the auxin content is high: thus, cells can growth rapidly. Consequently the growth polarity is directly related to the auxin catabolism.  相似文献   

2.
Polar cell-to-cell transport of auxin by plasma membrane–localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that determines the direction of auxin flow is controlled by reversible phosphorylation of the PIN hydrophilic loop (PINHL). Here, we identified three evolutionarily conserved TPRXS(N/S) motifs within the PIN1HL and proved that the central Ser residues were phosphorylated by the PINOID (PID) kinase. Loss-of-phosphorylation PIN1:green fluorescent protein (GFP) (Ser to Ala) induced inflorescence defects, correlating with their basal localization in the shoot apex, and induced internalization of PIN1:GFP during embryogenesis, leading to strong embryo defects. Conversely, phosphomimic PIN1:GFP (Ser to Glu) showed apical localization in the shoot apex but did not rescue pin1 inflorescence defects. Both loss-of-phosphorylation and phosphomimic PIN1:GFP proteins were insensitive to PID overexpression. The basal localization of loss-of-phosphorylation PIN1:GFP increased auxin accumulation in the root tips, partially rescuing PID overexpression-induced root collapse. Collectively, our data indicate that reversible phosphorylation of the conserved Ser residues in the PIN1HL by PID (and possibly by other AGC kinases) is required and sufficient for proper PIN1 localization and is thus essential for generating the differential auxin distribution that directs plant development.  相似文献   

3.
4.
5.
The structural requirements of a proposed class of auxin transport inhibitors have been shown to be very similar to those required to inhibit the cress (Lepidium sativum) root geotropic response. A 2-carboxyphenyl group separated by a conjugated system of atoms from a second aromatic ring appears to be necessary for a molecule to have high activity.  相似文献   

6.
Effect of Ethylene on Auxin Transport   总被引:4,自引:3,他引:1  
Ethylene was found to have no influence on auxin transport in hypocotyls of Helianthus annuus and Phaseolus vulgaris; coleoptiles of Zea mays; petiole sections of Gossypium hirsutum, Phaseolus vulgaris, and Coleus blumei. In the experiments described here, the tissues were treated with ethylene only during the 3 hours of polar transport. This short treatment is in contrast to the methods of others who found an effect of ethylene on auxin transport when plants grown in ethylene are used as experimental tissues.  相似文献   

7.
Soluble-compound microautoradiography was used to determinethe distribution of radioactivity in transverse sections ofintact dwarf pea stems (Pisum sativum L.) following the applicationof [3H]IAA to the apical bud. Near the transport front labelwas confined to the cambial zone of the axial bundles, includingthe differentiating secondary vascular elements. Fully differentiatedphloem and xylem elements remained unlabelled and no radioactivitywas detected in the leaf or stipule traces. Similar resultswere obtained in experiments with Vicia faba L. plants. Nearerthe labelled apical bud of the pea there was a more generaldistribution of label and evidence was found of free-space transportof radioactive material in the pith. When [3H]IAA was applied to mature foliage leaves the greatestconcentration of label was found in the differentiated phloemelements of the appropriate leaf trace and in the phloem ofthe adjacent axial bundles. Both basipetal and acropetal transportwas detected in this case. These results are consistent with the conclusions drawn fromearlier transport experiments which indicated that in the intactplant the long-distance basipetal transport of auxin from theapical bud takes place in a system which is separated from thephloem transport system and suggests that the vascular cambiumand its immediate derivatives may function as the normal pathwayfor the longdistance movement of auxin in the plant. The physiologicalsignificance of such a transport system for auxin is discussed.  相似文献   

8.
Polar auxin transport (PAT) is a major determinant of plant morphology and internal anatomy with important roles in vascular patterning, tropic growth responses, apical dominance and phyllotactic arrangement. Woody plants present a highly complex system of vascular development in which isolated bundles of xylem and phloem gradually unite to form concentric rings of conductive tissue. We generated several transgenic lines of hybrid poplar (Populus tremula x alba) with the auxin-responsive DR5 promoter driving GUS expression in order to visualize an auxin response during the establishment of secondary growth. Distinct GUS expression in the cambial zone and developing xylem-side derivatives supports the current view of this tissue as a major stream of basipetal PAT. However, we also found novel sites of GUS expression in the primary xylem parenchyma lining the outer perimeter of the pith. Strands of primary xylem parenchyma depart the stem as a leaf trace, and showed GUS expression as long as the leaves to which they were connected remained attached (i.e., until just prior to leaf abscission). Tissue composed of primary xylem parenchyma strands contained measurable levels of free indole-3-acetic acid (IAA) and showed basipetal transport of radiolabeled auxin (3H-IAA) that was both significantly faster than diffusion and highly sensitive to the PAT inhibitor NPA. Radiolabeled auxin was also able to move between the primary xylem parenchyma in the interior of the stem and the basipetal stream in the cambial zone, an exchange that was likely mediated by ray parenchyma cells. Our results suggest that (a) channeling of leaf-derived IAA first delineates isolated strands of pre-procambial tissue but then later shifts to include basipetal transport through the rapidly expanding xylem elements, and (b) the transition from primary to secondary vascular development is gradual, with an auxin response preceding the appearance of a unified and radially-organized vascular cambium.  相似文献   

9.
Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.  相似文献   

10.
11.
12.
In stem sections of lentil seedlings, there is a typical polar movement of IAA labelled with 14C. The degree of polarity, expressed as the ratio of basipetal to acropetal transport, was (25°C) 7.6. A decrease (from 25° to 15°C) and an increase (from 25° to 30°C) of temperature cause a reduction of the IAA uptake by the sections and a decrease of both the basipetal and the acropetal translocation of IAA. Results suggest that the basipetal as well as the acropetal movement of auxin, are dependent of a metabolical component which is discussed.  相似文献   

13.
We studied the effects of auxin (indole-3-acetic acid) on formation of the primary polarity axis in zygotes of the brown algae Fucus vesiculosusL. Within the first 2.5 h after fertilization, the zygotes release this phytohormone in the ambient medium. The treatment of developing zygotes with the inhibitor of indole-3-acetic acid transport from the cell 2,3,5-triiodobenzoic acid at 5 mg/l arrests the auxin secretion and leads to its accumulation in the cells. This causes a significant delay in zygote polarization. The treatment of zygotes with the exogenous indole-3-acetic acid at 1 mg/l stimulates cell polarization and formation of a rhizoid protuberance. When auxin was added to the medium with triiodobenzoic acid, the inhibitory effect of the latter was eliminated. It has been proposed that the content of indole-3-acetic acid in the ambient medium is a key factor in the induction of polarity of the F. vesiculosus zygotes.  相似文献   

14.
If segments of Impatiens sultani stem are explanted and incubated,separation layers often form across them and lead to abscission.To test the suggested role of auxin concentration in controllingthe position of abscission sites, explants were labelled byapplying [14C]IAA to the shoot tip 4 h prior to explanting;transport of auxin applied in this way seems to resemble thatof endogenous auxin. During subsequent incubation of explantsfor 20 h, basipetal transport resulted in 14C accumulating justabove the base of the explants (nearly 80 % in the bottom 4mm of 24 mm explants). In internodal explants that had beenwounded at explanting by incising one side so as to sever avascular bundle, and in nodal explants with the leaf removed,the 14C also accumulated just above the wound or node to abouttwice the concentration otherwise expected; this accumulationwas probably due to basipetal transport being impeded by vasculardiscontinuity at the wound or node. Accumulation just abovethe base, or above a wound or node, resulted in gradients of14C concentration (presumably reflecting endogenous auxin concentration)decreasing in the morphologically upward direction at each ofthese three positions where abscission sites tend to occur. Impatiens sultani, abscission, auxin, IAA, node, polarized transport, positional control, separation layer, wounding  相似文献   

15.

Background

Auxin binding protein 1 (ABP1) is a putative auxin receptor and its function is indispensable for plant growth and development. ABP1 has been shown to be involved in auxin-dependent regulation of cell division and expansion, in plasma-membrane-related processes such as changes in transmembrane potential, and in the regulation of clathrin-dependent endocytosis. However, the ABP1-regulated downstream pathway remains elusive.

Methodology/Principal Findings

Using auxin transport assays and quantitative analysis of cellular morphology we show that ABP1 regulates auxin efflux from tobacco BY-2 cells. The overexpression of ABP1can counterbalance increased auxin efflux and auxin starvation phenotypes caused by the overexpression of PIN auxin efflux carrier. Relevant mechanism involves the ABP1-controlled vesicle trafficking processes, including positive regulation of endocytosis of PIN auxin efflux carriers, as indicated by fluorescence recovery after photobleaching (FRAP) and pharmacological manipulations.

Conclusions/Significance

The findings indicate the involvement of ABP1 in control of rate of auxin transport across plasma membrane emphasizing the role of ABP1 in regulation of PIN activity at the plasma membrane, and highlighting the relevance of ABP1 for the formation of developmentally important, PIN-dependent auxin gradients.  相似文献   

16.
Inhibition of Polar Auxin Transport by Ethylene   总被引:20,自引:13,他引:7       下载免费PDF全文
Applied ethylene influences the growth of etiolated pea stem sections cut from untreated plants, but has no effect on (14)C-indoleacetic acid uptake, polar transport or destruction. However, the capacity of the polar auxin transport system is markedly reduced in sections cut from plants grown in ethylene, while the velocity of auxin transport is unchanged under these conditions. Inhibition of the polar transport system by ethylene could underlie certain responses in which the gas produces symptoms of auxin deficiency.  相似文献   

17.
The relation between the effects of auxin on growth, pH and potassium transport in hypocotyl segments of Helianthus annuus was studied. In a solution containing 20 mM Na2SO4 auxin-induced growth was accompanied by an auxin-induced pH drop in the medium. (NH4)2SO4, at the same concentration, brought about an almost complete abolishment of the effect of auxin on the pH. The magnitude of auxin-induced growth was, however, only slightly reduced. This result does not confirm the hypothesis according to which the action of auxin on growth is a result of its effect on the pH. In a solution containing 2 mM sodium phosphate buffer an inhibitory action of IAA on the release of potassium from the tissue was observed. Addition of 20 mM Na2SO4 to the medium brought about a complete abolishment of this effect. The magnitude of auxin induced pH drop was, however, similar in the two treatments. It was concluded that, although under suitable experimental conditions, a close relationship may exist between the effects of auxin on pH on K+ transport, the coupling between the two phenomena is not obligatory.  相似文献   

18.
Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport.  相似文献   

19.
生长素极性运输研究进展   总被引:2,自引:0,他引:2  
Recent advances in dissecting polar auxin transport, i.e., the physiological characteristics and regulation of polar auxin transport, the chemiosmotic hypothesis for polar auxin transport, and the role of polar auxin transport in plant growth and development were reviewed. The authors here focus on the progress of new supports-isolation and function analysis of the genes encoding putative auxin carriers, for the old model of polar auxin transport.  相似文献   

20.
生长素极性运输研究进展   总被引:25,自引:0,他引:25  
高等植物的生长发育受激素的广泛调控,其中生长素的作用尤为独特,因为生长素在植物组织内的浓度梯度是由其极性运输维持的,而正是激素在植物组织的相对含量决定了该组织的发育命运。高等植物体内存在可运输的化学信使的概念首先由Darwin父子提出。通过对金丝鸟木亡草(Phalarisca nariensis)幼苗的向光性的研究,他们认为植物的向光性受到一种可运输的物质的调控[1]。后来发现这一物质是生长素,在自然界中主要存在的形式是IAA。到本世纪 30年代,禾谷类植物中的生长素的极性运输得到证实,后来发现所有…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号