首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small-angle x-ray scattering data on the unliganded full-length fully glycosylated HIV-1 gp120, the soluble CD4 (domains 1-2) receptor, and their complex in solution are presented. Ab initio structure restorations using these data provides the first look at the envelope shape for the unliganded and the complexed gp120 molecule. Fitting known crystal structures of the unliganded SIV and the complexed HIV gp120 core regions within our resultant shape constraints reveals movement of the V3 loop upon binding.  相似文献   

2.
The envelope glycoprotein (Env) complexes of the human and simian immunodeficiency viruses (HIV and SIV, respectively) mediate viral entry and are a target for neutralizing antibodies. The receptor binding surfaces of Env are in large part sterically occluded or conformationally masked prior to receptor binding. Knowledge of the unliganded, trimeric Env structure is key for an understanding of viral entry and immune escape, and for the design of vaccines to elicit neutralizing antibodies. We have used cryo-electron tomography and averaging to obtain the structure of the SIV Env complex prior to fusion. Our result reveals novel details of Env organisation, including tight interaction between monomers in the gp41 trimer, associated with a three-lobed, membrane-distal gp120 trimer. A cavity exists at the gp41-gp120 trimer interface. Our model for the spike structure agrees with previously predicted interactions between gp41 monomers, and furthers our understanding of gp120 interactions within an intact spike.  相似文献   

3.
The external domain of the envelope glycoprotein, gp120, of simian immunodeficiency virus (SIV) has been expressed as a mature secreted product using recombinant baculoviruses and the expressed protein, which has an observed molecular mass of 110 kDa, was purified by monoclonal antibody (MAb) affinity chromatography. N-terminal sequence analysis showed a signal sequence cleavage identity similar to that of the gp120s of both human immunodeficiency virus type 1 (HIV-1) and HIV type 2. The expressed molecule bound to soluble CD4 with an affinity that was approximately 10-fold lower than that of gp120 from HIV-1. A screening of the ability of SIV envelope MAbs to inhibit CD4 binding revealed two groups of inhibitory MAbs. One group is dependent on conformation, while the second group maps to a discrete epitope near the amino terminus. The particular role of the V3 loop region of the molecule in CD4 binding was investigated by the construction of an SIV-HIV hybrid in which the V3 loop of SIV was precisely replaced with the equivalent domain from HIV-1 MN. The hybrid glycoprotein bound HIV-1 V3 loop MAbs and not SIV V3 MAbs but continued to bind conformational SIV MAbs and soluble CD4 as well as the parent molecule.  相似文献   

4.
Cell membrane fusion by human (HIV) and simian (SIV) immunodeficiency viruses is mediated by the envelope glycoproteins gp120 and gp41. Although the precise mechanism of the fusion process is unknown, the ectodomain of gp41 is thought to undergo dramatic rearrangement from its prefusogenic state. To elucidate this process further, the crystal structure of the SIV gp41 ectodomain (residues 27-149) was determined at 1.47 A resolution and is reported herein. It is the most accurate and complete structure of a retroviral gp41 ectodomain determined to date. The rod-like trimeric structure of SIV gp41 comprises three parallel N-terminal alpha-helices assembled as a coiled coil in the center with three antiparallel C-terminal alpha-helices packed on the outside connected by highly flexible loops. Portions of the loops in all three monomers are crystallographically disordered and could not be accurately modeled. The core of the structure is similar (but not identical) to those of smaller HIV/SIV gp41 segments previously determined by X-ray crystallography with root mean square deviations in main chain atoms of less than 1.0 A. The crystal structure differs more substantially from the reported NMR solution structure of the identical SIV construct. The mechanisms of viral fusion and the inhibition by peptides are discussed in the context of the three-dimensional structure.  相似文献   

5.
In human immunodeficiency virus (HIV) the viral envelope proteins gp41 and gp120 form a non-covalent complex, which is a potential target for AIDS therapies. In addition gp41 plays a possible role in HIV infection of B cells via the complement system. In an effort to better understand the molecular interactions of gp41, the structure of the HIV gp41 ectodomain has been modeled using the NMR restraints of the simian immunodeficiency virus (SIV) gp41 ectodomain (M. Caffrey, M. Cai, J. Kaufman, S.J. Stahl, P.T. Wingfield, A.M. Gronenborn, G.M. Clore, Solution structure of the 44 kDa ectodomain of SIV gp41, EMBO J. 17 (1998) 4572--4584). The resulting model presents the first structural information for the HIV gp41 loop, which has been implicated to play a direct role in binding to gp120 and C1q of the complement system.  相似文献   

6.
The human and simian immunodeficiency viruses (HIV and SIV) envelope glycoprotein consists of a trimer of two noncovalently and weakly associated subunits, gp120 and gp41. Upon binding of gp120 to cellular receptors, this labile native envelope complex undergoes conformational changes, resulting in a stable trimer-of-hairpins structure in gp41. Formation of the hairpin structure is thought to mediate membrane fusion by placing the viral and cellular membranes in close proximity. An in vitro-derived variant of SIVmac251, denoted CPmac, has acquired an unusually stable virion-associated gp120-gp41 complex. This unique phenotype is conferred by five amino acid substitutions in the gp41 ectodomain. Here we characterize the structural and physicochemical properties of the N40(L6)C38 model of the CPmac gp41 core. The 1.7-A resolution crystal structure of N40(L6)C38 is very similar to the six-helix bundle structure present in the parent SIVmac251 gp41. In both structures, three N40 peptides form a central three-stranded coiled coil, and three C38 peptides pack in an antiparallel orientation into hydrophobic grooves on the coiled-coil surface. Thermal unfolding studies show that the CPmac mutations destabilize the SIVmac251 six-helix bundle by 15 kJ/mol. Our results suggest that the formation of the gp41 trimer-of-hairpins structure is thermodynamically coupled to the conformational stability of the native envelope glycoprotein and raise the intriguing possibility that introduction of mutations to destabilize the six-helix bundle may lead to the stabilization of the trimeric gp120-gp41 complex. This study suggests a potential strategy for the production of stably folded envelope protein immunogens for HIV vaccine development.  相似文献   

7.
Gp120 is a critical component of the envelope of HIV-1. Its role in viral entry is well described. In view of its position on the viral envelope, gp120 is a part of the retrovirus that immune cells encounter first and has the potential to influence antiretroviral immune responses. We propose that high levels of gp120 are present in tissues and may contribute to the failure of the immune system to fully control and ultimately clear the virus. Herein, we show for the first time that lymphoid tissues from acutely HIV-1/SIV (SHIV)-KB9-infected macaques contain deposits of gp120 at concentrations that are high enough to induce suppressive effects on T cells, thus negatively regulating the antiviral CTL response and contributing to virus survival and persistence. We also demonstrate that SHIV-KB9 gp120 influences functional T cell responses during SHIV infection in a manner that suppresses degranulation and cytokine secretion by CTLs. Finally, we show that regulatory T cells accumulate in lymphoid tissues during acute infection and that they respond to gp120 by producing TGFbeta, a known suppressant of cytotoxic T cell activity. These findings have significant implications for our understanding of the contribution of non-entry-related functions of HIV-1 gp120 to the pathogenesis of HIV/AIDS.  相似文献   

8.
The trimeric envelope glycoprotein (Env) spikes displayed on the surfaces of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) virions are composed of three heterodimers of the viral glycoproteins gp120 and gp41. Although binding of gp120 to cell surface CD4 and a chemokine receptor is known to elicit conformational changes in gp120 and gp41, changes in quaternary structure of the trimer have only recently been elucidated. For the HIV-1 BaL isolate, CD4 attachment results in a striking rearrangement of the trimer from a "closed" to an "open" conformation. The effect of CD4 on SIV trimers, however, has not been described. Using cryo-electron tomography, we have now determined molecular architectures of the soluble CD4 (sCD4)-bound states of SIV Env trimers for three different strains (SIVmneE11S, SIVmac239, and SIV CP-MAC). In marked contrast to HIV-1 BaL, SIVmneE11S and SIVmac239 Env showed only minor conformational changes following sCD4 binding. In SIV CP-MAC, where trimeric Env displays a constitutively "open" conformation similar to that seen for HIV-1 BaL Env in the sCD4-complexed state, we show that there are no significant further changes in conformation upon the binding of either sCD4 or 7D3 antibody. The density maps also show that 7D3 and 17b antibodies target epitopes on gp120 that are on opposites sides of the coreceptor binding site. These results provide new insights into the structural diversity of SIV Env and show that there are strain-dependent variations in the orientation of sCD4 bound to trimeric SIV Env.  相似文献   

9.
The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV), are heterodimers of a transmembrane glycoprotein (usually gp41), and a surface glycoprotein (gp120), which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically approximately 120 A long and approximately 120 A wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is approximately 400 A wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each approximately 100 A long and approximately 100 A wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion-cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the "entry claw", provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry.  相似文献   

10.
The viral envelope glycoprotein gp41 mediates membrane fusion in HIV/SIV infection. gp41 ectodomain (e-gp41, residues 27-149), which was shown to interact with phospholipid membranes, exists in an equilibrium between the monomeric and trimeric states. Here, we analyzed, by intrinsic Trp fluorescence and resonance energy transfer, whether SIV e-gp41-membrane interaction depends on the gp41 oligomeric state. We found that both gp41 monomers and trimers bind membranes, with the monomers' full binding being reached at substantially lower lipid to protein ratios. Furthermore, the different characteristics of the Trp fluorescence of monomers and trimers enabled us to detect binding of each form at concentrations at which both species were present. CD spectroscopy revealed that the secondary structure of gp41 monomers does not change upon membrane binding, suggesting that membrane-bound monomeric-gp41 is a possible target for DP-178, a potent peptide inhibitor of HIV infection. The consequences of the interaction between monomeric and trimeric gp41 with membranes in HIV/SIV infection, its inhibition, and its associated neuropathologies are discussed.  相似文献   

11.
An antibody phage display library was constructed from RNA extracted from lymph node cells of a simian immunodeficiency virus (SIV)-infected long-term-nonprogressor macaque. Seven gp120-reactive Fabs were obtained by selection of the library against SIV monomeric gp120. Although each of the Fabs was unique in sequence, there were two distinct groups based on epitope recognition, neutralizing activity in vitro, and molecular analysis. Group 1 Fabs did not neutralize SIV and bound to a linear epitope in the V3 loop of the SIV envelope. In contrast, two of the group 2 Fabs neutralized homologous, neutralization-sensitive SIVsm isolates with high efficiency but failed to neutralize heterologous SIVmac isolates. Based on competition enzyme-linked immunosorbent assays with mouse monoclonal antibodies of known specificity, these Fabs reacted with a conformational epitope that includes domains V3 and V4 of the SIV envelope. These neutralizing and nonneutralizing Fabs provide valuable standardized and renewable reagents for studying the role of antibody in preventing or modifying SIV infection in vivo.  相似文献   

12.
The trimeric HIV/SIV envelope glycoprotein, gp160, is cleaved to noncovalently associated fragments, gp120 and gp41. Binding of gp120 to viral receptors leads to large structural rearrangements in both fragments. The unliganded gp120 core has a disordered beta3-beta5 loop, which reconfigures upon CD4 binding into an ordered, extended strand. Molecular modeling suggests that residues in this loop may contact gp41. We show here that deletions in the beta3-beta5 loop of HIV-1 gp120 weaken the binding of CD4 and prevent formation of the epitope for monoclonal antibody (mAb) 17b (which recognizes the coreceptor site). Formation of an encounter complex with CD4 binding and interactions of gp120 with mAbs b12 and 2G12 are not affected by these deletions. Thus, deleting the beta3-beta5 loop blocks the gp120 conformational change and may offer a strategy for design of restrained immunogens. Moreover, mutations in the SIV beta3-beta5 loop lead to greater spontaneous dissociation of gp120 from cell-associated trimers. We suggest that the CD4-induced rearrangement of this loop releases structural constraints on gp41 and thus potentiates its fusion activity.  相似文献   

13.
Before the development of virus-specific immune responses, peripheral blood mononuclear cells (PBMC) from uninfected rhesus monkeys and human beings have the capacity to lyse target cells expressing simian immunodeficiency virus (SIV) or human immunodeficiency virus-1 (HIV) envelope (gp130 and gp120) antigens. Lysis by naive effector cells does not require major histocompatibility complex (MHC)-restricted antigen presentation, is equally effective for allogeneic and xenogeneic targets, and is designated MHC-unrestricted (UR) lysis. UR lysis is not sensitive to EGTA and does not require de novo RNA or protein synthesis. Several kinds of envelope-expressing targets, including cells that poorly express MHC class I antigens, can be lysed. CD4(+) effectors are responsible for most of the lytic activity. High lysis is correlated with high expression of HIV or SIV envelope, specifically, the central one-third of the gp130 molecule, and lysis is completely inhibited by a monoclonal antibody against envelope. Our work extends observations of human lymphocytes expressing HIV gp120 to the SIV/rhesus monkey model for AIDS. Additionally, we address the relevance of UR lysis in vivo. A survey of PBMC from 56 uninfected rhesus monkeys indicates that 59% of the individuals had peak UR lytic activity above 15% specific lysis. Eleven of these monkeys were subsequently infected with SIV. Animals with UR lytic activity above 15% specific lysis were predisposed to more rapid disease progression than animals with low UR lytic activity, suggesting a strong correlation between this form of innate immunity and disease progression to AIDS.  相似文献   

14.
The high affinity binding site for human immunodeficiency virus (HIV) envelope glycoprotein gp120 resides within the amino-terminal domain (D1) of CD4. Mutational and antibody epitope analyses have implicated the region encompassing residues 40-60 in D1 as the primary binding site for gp120. Outside of this region, a single residue substitution at position 87 abrogates syncytium formation without affecting gp120 binding. We describe two groups of CD4 monoclonal antibodies (mAbs) which recognize distinct epitopes associated with these regions in D1. These mAbs distinguish between the gp120 binding event and virus infection and virus-induced cell fusion. One cluster of mAbs, which bind at or near the high affinity gp120 binding site, blocked gp120 binding to CD4 and, as expected, also blocked HIV infection of CD4+ cells and virus-induced syncytium formation. A second cluster of mAbs, which recognize the CDR-3 like loop, did not block gp120 binding as demonstrated by their ability to form ternary complexes with CD4 and gp120. Yet, these mAbs strongly inhibited HIV infection of CD4+ cells and HIV-envelope/CD4-mediated syncytium formation. The structure of D1 has recently been solved at atomic resolution and in its general features resembles IgVk regions as predicted from sequence homology and mAb epitopes. In the D1 structure, the regions recognized by these two groups of antibodies correspond to the C'C" (Ig CDR2) and FG (Ig CDR3) hairpin loops, respectively, which are solvent-exposed beta turns protruding in two different directions on a face of D1 distal to the D2 domain. This face is straddled by the longer BC (Ig CDR1) loop which bisects the plain formed by C'C' and FG. This structure is consistent with C'C' and FG forming two distinct epitope clusters within D1. We conclude that the initial interaction between gp120 and CD4 is not sufficient for HIV infection and syncytium formation and that CD4 plays a critical role in the subsequent virus-cell and cell-cell membrane fusion events. We propose that the initial binding of CD4 to gp120 induces conformational changes in gp120 leading to subsequent interactions of the FG loop with other regions in gp120 or with the fusogenic gp41 potion of the envelope gp160 glycoprotein.  相似文献   

15.
E O Freed  D J Myers    R Risser 《Journal of virology》1989,63(11):4670-4675
The envelope glycoproteins of the human immunodeficiency virus (HIV) type 1 are synthesized as a precursor molecule, gp160, which is cleaved to generate the two mature envelope glycoproteins, gp120 and gp41. The cleavage reaction, which is mediated by a host protease, occurs at a sequence highly conserved in retroviral envelope glycoprotein precursors. We have investigated the sequence requirements for this cleavage reaction by introducing four single-amino-acid changes into the glutamic acid-lysine-arginine sequence immediately amino terminal to the site of cleavage. We have also examined the effects of these mutations on the syncytium formation induced by HIV envelope glycoproteins. Our results indicate that a glutamic acid to glycine change at gp120 amino acid 516, a lysine to isoleucine change at amino acid 517, and an arginine to lysine change at amino acid 518 affect neither gp160 cleavage nor syncytium formation. The results obtained with the arginine to lysine change at amino acid 518 differ significantly from the results obtained with the same mutation at the envelope precursor cleavage site of a murine leukemia virus (E. O. Freed, and R. Risser, J. Virol. 61:2852-2856, 1987). An arginine to threonine mutation at gp120 amino acid 518, the terminal residue of gp120, abolishes both gp160 cleavage and syncytium formation. These findings demonstrate that despite its highly conserved nature, the basic pair of amino acids at the site of gp160 cleavage is not absolutely required for proper envelope glycoprotein processing. This report also supports the idea that cleavage of gp160 is required for activation of the HIV envelope fusion function.  相似文献   

16.
The envelope protein (Env) of lentiviruses such as HIV, SIV, FIV and EIAV is larger than that of other retroviruses. The Chinese EIAV attenuated vaccine is based on Env and has helped to successfully control this virus, demonstrating that envelope is crucial for vaccine. We compared Env variation of the four kinds of lentiviruses. Phylogenetic analysis showed that the evolutionary relationship of Env between HIV and SIV was the closest and they appeared to descend from a common ancestor, and the relationship of HIV and EIAV was the furthest. EIAV had the shortest Env length and the least number of potential N-linked glycosylation sites (PNGS) as well as glycosylation density compared to various immunodeficiency viruses. However, HIV had the longest Env length and the most PNGS. Moreover, the alignment of HIV and SIV showed that PNGS were primarily distributed within extracellular membrane protein gp120 rather than transmembrane gp41. It implies that the size difference among these viruses is associated with a lentivirus specific function and also the diversity of env. There are low levels of modification of glycosylation sites of Env and selection of optimal protective epitopes might be useful for development of an effective vaccine against HIV/AIDS.  相似文献   

17.
C-peptides derived from the HIV envelope glycoprotein transmembrane subunit gp41 C-terminal heptad repeat (C-HR) region are potent HIV fusion inhibitors. These peptides interact with the gp41 N-terminal heptad repeat (N-HR) region and block the gp41 six-helix bundle formation that is required for fusion. However, the parameters that govern this inhibition have yet to be elucidated. We address this issue by comparing the ability of C34, derived from HIV-1, HIV-2 and SIV gp41, to inhibit HIV-1, HIV-2 and SIV envelope-mediated fusion and the ability of these peptides to form stable six-helix bundles with N36 peptides derived from gp41 of these three viruses. The ability to form six-helix bundles was examined by circular dichroism spectroscopy, and HIV/SIV Env-mediated membrane fusion was monitored by a dye transfer assay. HIV-1 N36 formed stable helix bundles with HIV-1, HIV-2 and SIV C34, which all inhibited HIV-1 Env-mediated fusion at IC(50)<10nM. The three C34 peptides were poor inhibitors of HIV-2 and SIV fusion (IC(50)>100nM), although HIV-2 and SIV N36 formed stable helix bundles with SIV C34. Priming experiments with sCD4 indicate that, in contrast to HIV-1, HIV-2 and SIV Env do not expose their N-HR region to SIV C34 following CD4 binding, but rapidly proceed to co-receptor engagement and six-helix bundle formation resulting in fusion. Our results suggest that several factors, including six-helix bundle stability and the ability of CD4 to destabilize the envelope glycoprotein, serve as determinants of sensitivity to entry inhibitors.  相似文献   

18.
A biotinylation assay was used to detect the envelope glycoprotein of the simian immunodeficiency virus (SIV) envelope glycoprotein expressed by a recombinant vaccinia virus on the surface of HeLa T4 cells. The relationship between the detection of the envelope glycoprotein on the cell surface and its secretion from the cell was examined. It was found that much more gp120 was released into the culture medium than could be accounted for by shedding of the biotinylated SIV envelope protein from the cell surface. Treatment with the ionophore monensin showed that this drug did not block the secretion of gp120 into the culture medium even though the expression of gp120 on the cell surface was strongly downregulated. Similar results were observed for the secretion of gp120 in HUT78 cells infected with SIVmac251 virus. Brefeldin A, on the other hand, inhibited both the detection of gp120 on the cell surface and its secretion into the culture medium. On the basis of these results, we propose that gp120 can be secreted into the culture medium via at least two pathways. One pathway involves the dissociation of gp120 from membrane-associated gp41-gp120 complexes on the cell surface. However, the major pathway involves the secretion of gp120 without its transitory appearance on the cell surface as part of a gp41-gp120 complex.  相似文献   

19.
Whereas several recent AIDS vaccine strategies have protected rhesus macaques against a pathogenic simian/human immunodeficiency virus (SHIV)(89.6P) challenge, similar approaches have provided only modest, transient reductions in viral burden after challenge with virulent, pathogenic SIV, which is more representative of HIV infection of people. We show here that priming with replicating adenovirus recombinants encoding SIV env/rev, gag, and/or nef genes, followed by boosting with SIV gp120 or an SIV polypeptide mimicking the CD4 binding region of the envelope, protects rhesus macaques from intrarectal infection with the highly pathogenic SIV(mac251). Using trend analysis, significant reductions in acute-phase and set point viremia were correlated with anti-gp120 antibody and cellular immune responses, respectively. Within immunization groups exhibiting significant protection, a subset (39%) of macaques have exhibited either no viremia, cleared viremia, or controlled viremia at the threshold of detection, now more than 40 weeks postchallenge. This combination prime-boost strategy, utilizing replication competent adenovirus, is a promising alternative for HIV vaccine development.  相似文献   

20.
The envelope glycoprotein of HIV gp120 is a T cell Ag in experimental animals and in humans infected with HIV or deliberately immunized with gp120 in various forms. Inasmuch as T cell responses result from the interaction of Ag processed and presented by APC with the unprimed T cell repertoire, we have investigated the human T cell repertoire specific for gp120 in seronegative, normal individuals. T cell lines and clones specific for HIV gp120 were generated by repeated in vitro stimulation of peripheral blood T lymphocytes with gp120-pulsed APC, followed by IL-2 expansion. We observed that the T cell response to whole gp120 involved single restricted immunodominant epitopes in gp120 that differ between responding individuals. Focusing of the response to limited regions of gp120 when the whole Ag is used for priming suggests that one or more adjacent epitopes are immunodominant and mask responses to "immunorecessive" epitopes. We have been able to generate primary in vitro responses to recessive epitopes by stimulation in vitro with synthetic peptides of gp120. The results indicate that a much broader T repertoire can be detected when individual peptides are used for priming in vitro rather than gp120. This information has important implications for the development of vaccination protocols aimed at eliciting diverse immune responses to "immunorecessive" regions of envelope glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号