首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p38 MAPK family consists of four isoform proteins (alpha, beta, gamma, and delta) that are activated by the same stimuli, but the information about how these proteins act together to yield a biological response is missing. Here we show a feed-forward mechanism by which p38alpha may regulate Ras transformation and stress response through depleting its family member p38gamma protein via c-Jun-dependent ubiquitin-proteasome pathways. Analyses of MAPK kinase 6 (MKK6)-p38 fusion proteins showed that constitutively active p38alpha (MKK6-p38alpha) and p38gamma (MKK6-p38gamma) stimulates and inhibits c-Jun phosphorylation respectively, leading to a distinct AP-1 regulation. Depending on cell type and/or stimuli, p38alpha phosphorylation results in either Ras-transformation inhibition or a cell-death escalation that invariably couples with a decrease in p38gamma protein expression. p38gamma, on the other hand, increases Ras-dependent growth or inhibits stress induced cell-death independent of phosphorylation. In cells expressing both proteins, p38alpha phosphorylation decreases p38gamma protein expression, whereas its inhibition increases cellular p38gamma concentrations, indicating an active role of p38alpha phosphorylation in negatively regulating p38gamma protein expression. Mechanistic analyses show that p38alpha requires c-Jun activation to deplete p38gamma proteins by ubiquitin-proteasome pathways. These results suggest that p38alpha may, upon phosphorylation, act as a gatekeeper of the p38 MAPK family to yield a coordinative biological response through disrupting its antagonistic p38gamma family protein.  相似文献   

2.
p38alpha mitogen-activated protein (MAP) kinase is widely expressed in many mammalian tissues and is activated as a part of signal transduction cascades that respond to inflammatory stimuli. The activation of p38 is known to trigger various biological effects, including cell death, differentiation, and proliferation. The central role played by p38alpha in cellular signaling events, including those that control a wide range of inflammatory and autoimmune diseases, makes it an attractive drug target. To develop optimized small molecule therapeutics targeting p38alpha, different techniques must be employed for the detailed biochemical, biophysical, and structural characterization of the interactions of p38alpha with lead compounds. These methods typically require large quantities of highly purified p38alpha protein. We describe here an improved expression and purification method for recombinant p38alpha production that reproducibly yields over 70 mg of highly purified protein per liter of shake flask bacterial culture. This yield is significantly higher than that previously reported for p38alpha production in Escherichia coli. We achieved a significant increase in soluble p38alpha protein expression by using the genetically modified E. coli strain BL21 DE3 Rosetta, which is optimized for expression of eukaryotic proteins with codons rarely used in E. coli. The p38alpha protein was purified to near homogeneity using a simple two-step procedure including nickel-chelating Sepharose chromatography followed by anion-exchange chromatography using MonoQ resin. Purified p38alpha was characterized using the standard commercially available small molecule inhibitor SB-203580. The binding association and dissociation rate constants determined by Biacore are in excellent agreement with previously reported values. The purified p38alpha protein was efficiently activated by MKK6 kinase to yield phosphorylated p38alpha. Purified p38alpha protein was also successfully crystallized, producing crystals diffracting to 1.9 angstroms, exceeding the highest resolution for p38alpha reported in the Protein DataBank. The simplicity and efficiency of this approach should prove useful for many laboratories that are interested in production of p38alpha for biochemical and biophysical studies and structure-based drug design.  相似文献   

3.
The intracellular protozoan Toxoplasma gondii triggers rapid MAPK activation in mouse macrophages (Mphi). We used synthetic inhibitors and dominant-negative Mphi mutants to demonstrate that T. gondii triggers IL-12 production in dependence upon p38 MAPK. Chemical inhibition of stress-activated protein kinase/JNK showed that this MAPK was also required for parasite-triggered IL-12 production. Examination of upstream MAPK kinases (MKK) 3, 4, and 6 that function as p38 MAPK activating kinases revealed that parasite infection activates only MKK3. Nevertheless, in MKK3(-/-) Mphi, p38 MAPK activation was near normal and IL-12 production was unaffected. Recently, MKK-independent p38alpha MAPK activation via autophosphorylation was described. Autophosphorylation depends upon p38alpha MAPK association with adaptor protein, TGF-beta-activated protein kinase 1-binding protein-1. We observed TGF-beta-activated protein kinase 1-binding protein-1-p38alpha MAPK association that closely paralleled p38 MAPK phosphorylation during Toxoplasma infection of Mphi. Furthermore, a synthetic p38 catalytic-site inhibitor blocked tachyzoite-induced p38alpha MAPK phosphorylation. These data are the first to demonstrate p38 MAPK autophosphorylation triggered by intracellular infection.  相似文献   

4.
Exogenous fibroblast growth factor 1 (FGF1) signals through activation of transmembrane FGF receptors (FGFRs) but may also regulate cellular processes after translocation to the cytosol and nucleus of target cells. Translocation of FGF1 occurs across the limiting membrane of intracellular vesicles and is a regulated process that depends on the C-terminal tail of the FGFR. Here, we report that translocation of FGF1 requires activity of the alpha isoform of p38 mitogen-activated protein kinase (MAPK). FGF1 translocation was inhibited after chemical inhibition of p38 MAPK or after small interfering RNA knockdown of p38alpha. Translocation was increased after stimulation of p38 MAPK with anisomycin, mannitol, or H2O2. The activity level of p38 MAPK was not found to affect endocytosis or intracellular sorting of FGF1/FGFR1. Instead, we found that p38 MAPK regulates FGF1 translocation by phosphorylation of FGFR1 at Ser777. The FGFR1 mutation S777A abolished FGF1 translocation, while phospho-mimetic mutations of Ser777 to Asp or Glu allowed translocation to take place and bypassed the requirement for active p38 MAPK. Ser777 in FGFR1 was directly phosphorylated by p38alpha in a cell-free system. These data demonstrate a crucial role for p38alpha MAPK in the regulated translocation of exogenous FGF1 into the cytosol/nucleus, and they reveal a specific role for p38alpha MAPK-mediated serine phosphorylation of FGFR1.  相似文献   

5.
Mitogen-activated protein kinases (MAPKs) play pivotal roles in growth, development, differentiation, and apoptosis. The exact role of a given MAPK in these processes is not fully understood. This question could be addressed using active forms of these enzymes that are independent of external stimulation and upstream regulation. Yet, such molecules are not available. MAPK activation requires dual phosphorylation, on neighboring Tyr and Thr residues, catalyzed by MAPK kinases (MAPKKs). It is not known how to force MAPK activation independent of MAPKK phosphorylation. Here we describe a series of nine hyperactive (catalytically and biologically), MAPKK-independent variants of the MAPK Hog1. Each of the active molecules contains just a single point mutation. Six mutations are in the conserved L16 domain of the protein. The active Hog1 mutants were obtained through a novel genetic screen that could be applied for isolation of active MAPKs of other families. Equivalent mutations, introduced to the human p38alpha, rendered the enzyme active even when produced in Escherichia coli, showing that the mutations increased the intrinsic catalytic activity of p38. It implies that the activating mutations could be directly used for production of active forms of MAPKs from yeasts to humans and could open the way to revealing their biological functions.  相似文献   

6.
7.
8.
Human endothelial nitric oxide synthase (eNOS) plays a crucial role in maintaining blood pressure homeostasis and vascular integrity. eNOS gene expression may be upregulated by a signaling pathway, including PI-3Kgamma--> Jak2--> MEK1 --> ERK1/2--> PP2A. It remains unclear whether other mitogen-activated protein kinase (MAPK) family members, such as JNK, p38 kinase, and ERK5/BMK1, also modulate eNOS gene expression. Our purpose, therefore, is to shed light on the effect of the p38 MAPK signaling pathway on the regulation of eNOS promoter activity. The results showed that a red fluorescent protein reporter gene vector containing the full length of the human eNOS promoter was first successfully constructed, expressing efficiently in ECV304 cells with the characteristics of real time observation. The wild-types of p38alpha, p38beta, p38gamma, and p38delta signal molecules all markedly downregulated promoter activity, which could be reversed by their negative mutants, including p38alpha (AF), p38beta (AF), p38gamma (AF), and p38delta (AF). Promoter activity was also significantly downregulated by MKK6b (E), an active mutant of an upstream kinase of p38 MAPK. The reduction in promoter activity by p38 MAPK could be blocked by treatment with a p38 MAPK specific inhibitor, SB203580. Moreover, the activation of endogenous p38 MAPK induced by lipopolysaccharide resulted in a prominent reduction in promoter activity. These findings strongly suggest that the activation of the p38 MAPK signaling pathway may be implicated in the downregulation of human eNOS promoter activity.  相似文献   

9.
An increase in cellular levels of cyclic nucleotides activates serine/threonine-dependent kinases that lead to diverse physiological effects. Recently we reported the activation of the p38 mitogen-activated protein kinase (MAPK) pathway in neutrophils by a cGMP-dependent mechanism. In this study we demonstrated that exogenously supplied nitric oxide leads to activation of p38 MAPK in 293T fibroblasts. Phosphorylation of p38 corresponded with an increase in ATF-2-dependent gene expression. The effect of nitric oxide was mimicked by addition of 8-bromo-cGMP, indicating that activation of soluble guanylyl cyclase was involved. The importance of cGMP-dependent protein kinase in the activation of p38 MAPK by nitric oxide in 293T cells was assessed in a transfection based assay. Overexpression of cGMP-dependent protein kinase-1alpha caused phosphorylation of p38 in these cells and potentiated the effectiveness of cGMP. Overexpression of a catalytically inactive mutant form of this enzyme (T516A) blocked the ability of both nitric oxide and 8-bromo-cGMP to activate p38 as measured by both p38 phosphorylation and ATF-2 driven gene expression. Together, these data demonstrate that nitric oxide stimulates a novel pathway leading to activation of p38 MAPK that requires activation of cGMP-dependent protein kinase.  相似文献   

10.
The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in cell differentiation, but the signaling mechanisms by which it is activated during this process are largely unknown. Cdo is an immunoglobulin superfamily member that functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that the Cdo intracellular region interacts with JLP, a scaffold protein for the p38alpha/beta MAPK pathway. Cdo, JLP, and p38alpha/beta form complexes in differentiating myoblasts, and Cdo and JLP cooperate to enhance levels of active p38alpha/beta in transfectants. Primary myoblasts from Cdo(-/-) mice, which display a defective differentiation program, are deficient in p38alpha/beta activity, and the expression of an activated form of MKK6 (an immediate upstream activator of p38) rescues the ability of Cdo(-/-) cells to differentiate. These results document a novel mechanism of signaling during cell differentiation: the interaction of a MAPK scaffold protein with a cell surface receptor.  相似文献   

11.
Activated microglia have been suggested to produce a cytotoxic cytokine, tumor necrosis factor alpha (TNF alpha), in many pathological brains. Thus, determining the molecular mechanism of this induction and suppression has been the focus of a great deal of research. Using lipopolysaccharide (LPS) as an experimental inducer of TNF alpha, we investigated the regulatory mechanism by which TNFalpha is induced or suppressed in microglia. We found that LPS-induced TNF alpha is suppressed by pretreatment with the p38 mitogen-activated protein kinase (p38MAPK) inhibitor SB203580. Similar suppression was achieved by pretreatment with specific protein kinase C (PKC) inhibitors, G?6976, myristoylated pseudosubstrate (20-28), and bisindolylmaleimide. These results suggest that PKC alpha activity as well as p38MAPK activity is associated with TNF alpha induction in LPS-stimulated microglia. The requirement of PKC alpha in LPS-dependent TNFalpha induction was verified in PKC alpha-downregulated microglia which could be induced by phorbol-12-myristate-13-acetate pretreatment. Simultaneously, PKC alpha was found to be requisite for the activation of p38MAPK in LPS-stimulated microglia. In addition, the PKC alpha levels in the LPS-stimulated microglia were observed to decrease in response to the p38MAPK inhibitor, indicating that the PKC alpha levels are regulated by the p38MAPK activity. We therefore concluded that PKC alpha and p38MAPK are interactively linked to the signaling cascade inducing TNFalpha in LPS-stimulated microglia, and that in this cascade, PKC alpha is requisite for the activation of p38MAPK, leading to the induction of TNF alpha.  相似文献   

12.
We have investigated the ability of the mitogen-activated protein kinase (MAPK) kinase MKK6 to activate different members of the p38 subfamily of MAPKs and found that some MKK6 mutants can efficiently activate p38alpha but not p38gamma. In contrast, a constitutively active MKK6 mutant activated both p38 MAPK isoforms to similar extents. The same results were obtained upon co-expression in Xenopus oocytes and in vitro using either MKK6 immunoprecipitates from transfected cells or bacterially produced recombinant proteins. We also found that the preferential activation of p38alpha by MKK6 correlated with more efficient binding of MKK6 to p38alpha than to p38gamma. Furthermore, increasing concentrations of constitutively active MKK6 differentially activated either p38alpha alone (low MKK6 activity) or both p38alpha and p38gamma (high MKK6 activity), both in vitro and in injected oocytes. The determinants for selectivity are located at the carboxyl-terminal lobe of p38 MAPKs but do not correspond to the activation loop or common docking sequences. We also showed that different stimuli can induce different levels of endogenous MKK6 activity that correlate with differential activation of p38 MAPKs. Our results suggest that the level of MKK6 activity triggered by a given stimulus may determine the pattern of downstream p38 MAPK activation in the particular response.  相似文献   

13.
Kim do Y  Jung MS  Park YG  Yuan HD  Quan HY  Chung SH 《BMB reports》2011,44(10):659-664
As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).  相似文献   

14.
The role of p38 mitogen-activated protein kinase (MAPK) in apoptosis is a matter of debate. Here, we investigated the involvement of p38 MAPK in endothelial apoptosis induced by tumor necrosis factor alpha (TNF). We found that activation of p38 MAPK preceded activation of caspase-3, and the early phase of p38 MAPK stimulation did not depend on caspase activity, as shown by pretreatment with the caspase inhibitors z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) and Boc-Asp(OMe)-fluoromethylketone (BAF). The p38 MAPK inhibitor SB203580 significantly attenuated TNF-induced apoptosis in endothelial cells, suggesting that p38 MAPK is essential for apoptotic signaling. Furthermore, we observed a time-dependent increase in active p38 MAPK in the mitochondrial subfraction of cells exposed to TNF. Notably, the level of Bcl-x(L) protein was reduced in cells undergoing TNF-induced apoptosis, and this reduction was prevented by treatment with SB203580. Immunoprecipitation experiments revealed p38 MAPK-dependent serine-threonine phosphorylation of Bcl-x(L) in TNF-treated cells. Exposure to lactacystin prevented both the downregulation of Bcl-x(L) and activation of caspase-3. Taken together, our results suggest that TNF-induced p38 MAPK-mediated phosphorylation of Bcl-x(L) in endothelial cells leads to degradation of Bcl-x(L) in proteasomes and subsequent induction of apoptosis.  相似文献   

15.
Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications.  相似文献   

16.
The migration of endothelial cells in response to various stimulating factors plays an essential role in angiogenesis. The p38 MAPK pathway has been implicated to play an important role in endothelial cell migration because inhibiting p38 MAPK activity down-regulates vascular endothelial growth factor (VEGF)-stimulated migration. Currently, the signaling components in the p38 MAPK activation pathway and especially the mechanisms responsible for p38 MAPK-regulated endothelial cell migration are not well understood. In the present study, we found that p38 MAPK activity is required for endothelial cell migration stimulated by both VEGF and nongrowth factor stimulants, sphingosine 1-phosphate and soluble vascular cell adhesion molecule. By using dominant negative forms of signaling components in the p38 MAPK pathway, we identified that a regulatory pathway consisting of MKK3-p38alpha/gamma-MAPK-activated protein kinase 2 participated in VEGF-stimulated migration. In further studies, we showed that a minimum of a 10-h treatment with SB203580 (specific p38 MAPK inhibitor) was needed to block VEGF-stimulated migration, suggesting an indirect role of p38 MAPK in this cellular event. Most interestingly, the occurrence of SB203580-induced migratory inhibition coincided with a reduction of urokinase plasminogen activator (uPA) expression. Furthermore, agents disrupting uPA and uPA receptor interaction abrogated VEGF-stimulated cell migration. These results suggest a possible association between cell migration and uPA expression. Indeed, VEGF-stimulated migration was not compromised by SB203580 in endothelial cells expressing the uPA transgene; however, VEGF-stimulated migration was inhibited by agents disrupting uPA-uPA receptor interaction. These results thus suggest that the p38 MAPK pathway participates in endothelial cell migration by regulating uPA expression.  相似文献   

17.
p38 mitogen-activated protein kinase (MAPK), which is situated downstream of MAPK kinase (MKK) 6 and MKK3, is activated by mitogenic or stress-inducing stimuli, as well as by insulin. To clarify the role of the MKK6/3-p38 MAPK pathway in the regulation of glucose transport, dominant negative p38 MAPK and MKK6 mutants and constitutively active MKK6 and MKK3 mutants were overexpressed in 3T3-L1 adipocytes and L6 myotubes using an adenovirus-mediated transfection procedure. Constitutively active MKK6/3 mutants up-regulated GLUT1 expression and down-regulated GLUT4 expression, thereby significantly increasing basal glucose transport but diminishing transport induced by insulin. Similar effects were elicited by chronic (24 h) exposure to tumor necrosis factor alpha, interleukin-1beta, or 200 mm sorbitol, all activate the MKK6/3-p38 MAPK pathway. SB203580, a specific p38 MAPK inhibitor, attenuated these effects, further confirming that both MMK6 and MMK3 act via p38 MAPK, whereas they had no effect on the increase in glucose transport induced by a constitutively active MAPK kinase 1 (MEK1) mutant or by myristoylated Akt. In addition, suppression of p38 MAPK activation by overexpression of a dominant negative p38 MAPK or MKK6 mutant did not diminish insulin-induced glucose uptake by 3T3-L1 adipocytes. It is thus apparent that activation of p38 MAPK is not essential for insulin-induced increases in glucose uptake. Rather, p38 MAPK activation leads to a marked down-regulation of insulin-induced glucose uptake via GLUT4, which may underlie cellular stress-induced insulin resistance caused by tumor necrosis factor alpha and other factors.  相似文献   

18.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide with mitogenic actions linked to activation of tyrosine kinase signaling pathways. ET-1 induces cyclooxygenase-2 (COX-2), an enzyme that converts arachidonic acid to pro-inflammatory eicosanoids. Activation of each of the three major mitogen-activated protein kinase (MAPK) pathways, ERK1/2, JNK/SAPK, and p38 MAPK (p38), have been shown to enhance the expression of COX-2. Negative regulation of MAPK may occur via a family of dual specificity phosphatases referred to as mitogen-activated protein kinase phosphatases (MKP). The goal of this work was to test the hypothesis that wild type MKP-1 regulates the expression of ET-1-induced COX-2 expression by inhibiting the activation of p38 in cultured glomerular mesangial cells (GMC). An adenovirus expressing both wild type and a catalytically inactive mutant of MKP-1 (MKP-1/CS) were constructed to study ET-1-regulated MAPK signaling and COX-2 expression in cultured GMC. ET-1 stimulated the phosphorylation of ERK and p38 alpha MAPK and induced the expression of COX-2. Expression of COX-2 was partially blocked by U0126, a MEK inhibitor, and SB 203580, a p38 MAPK inhibitor. Adenoviral expression of MKP-1/CS augmented basal and ET-1-induced phosphorylation of p38 alpha MAPK with less pronounced effects on ERK1/2 phosphorylation. Ectopic expression of wild type MKP-1 blocked the phosphorylation of p38 alpha MAPK by ET-1 but increased the phosphorylation of p38 gamma MAPK. Co-precipitation studies demonstrated association of MKP-1 with p38 alpha MAPK and ERK1/2. Immunofluorescent image analysis demonstrated trapping of phospho-p38 MAPK in the cytoplasm by MKP-1/CS/green fluorescent protein. ET-1-stimulated expression of COX-2 was increased in MKP-1/CS versus LacZ or green fluorescent protein-infected control cells. These results indicate that MKP-1 demonstrates a relative selectivity for p38 alpha MAPK versus p38 gamma MAPK in GMC and is likely to indirectly regulate the expression of COX-2.  相似文献   

19.
We reported previously that endogenous p38 MAPK activity is elevated in invasive breast cancer cells and that constitutive p38 MAPK activity is important for overproduction of uPA in these cells (Huang, S., New, L., Pan, Z., Han, J., and Nemerow, G. R. (2000) J. Biol. Chem. 275, 12266-12272). However, it is unclear how elevated endogenous p38 MAPK activity is maintained in invasive breast cancer cells. In the present study, we found that blocking alpha(v) integrin functionality with a function-blocking monoclonal antibody or down-regulating alpha(v) integrin expression with alpha(v)-specific antisense oligonucleotides significantly decreased the levels of active p38 MAPK and inhibited cell-associated uPA expression in invasive breast cancer MDA-MB-231 cells. These results suggest a function link between alpha(v) integrin, p38 MAPK activity, and uPA expression in invasive tumor cells. We also found that vitronectin/alpha(v) integrin ligation specifically induced p38 MAPK activation and uPA up-regulation in invasive MDA-MB-231 cells but not in non-invasive MCF7 cells. Finally, using a panel of melanoma cells, we demonstrated that the cytoplasmic tail of alpha(v) integrin subunit is required for alpha(v) integrin ligation-induced p38 MAPK activation.  相似文献   

20.
Signaling events triggered by interferon alpha (IFN-α) and ribavirin are involved in anti-hepatitis C virus (HCV) action. The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in HCV pathogenesis. Effects of IFN-α and ribavirin on p38 MAPK signaling were investigated in human hepatoma cells. Type I IFN receptor 2 (IFNAR2) mediated IFN-α-induced p38 MAPK phosphorylation. Also, p38 MAPK phosphorylation was enhanced by ribavirin. Treatment for 48 h with a combination of IFN-α and ribavirin increased p38 MAPK phosphorylation, whereas the treatment for 72 h reduced p38 MAPK phosphorylation. Cell culture-derived HCV (HCVcc) infection dramatically increased p38 MAPK phosphorylation and such phosphorylation was inhibited by IFN-α or ribavirin. Moreover, siRNA-mediated knockdown of p38 MAPK resulted in enhancement of ribavirin-dependent HCV RNA replication. These results suggest that regulation of p38 MAPK signaling by IFN-α and ribavirin might contribute to anti-HCV action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号