首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The α-amylase inhibitor (α-AI) activity varied from 7.529 to 10.766 (IU/g) in 13 rice bean with different genotypes. BRS-2 exhibited the highest α-AI activity (55.3%). Rice bean α-AI was purified to homogeneity by 80% ammonium sulfate precipitation, dialysis, ion exchange chromatography on DEAE-Sepharose and gel filtration through Superdex-75. Its homogeneity was confirmed by SDS-PAGE under reducing conditions showing a single band protein of molecular weight 25 kDa. The inhibitor was purified to 75.9 fold with final yield of 28.0% with specific activity of 660.2 IU. Inhibition studies carried out at pH from 2.2 to 9.0 revealed pH optimum at pH 6.9 (69.3%). The maximum α-AI activity was found at 37°C (68.8 %) and the lowest was revealed at 100°C (37.0%). Optimum inhibitory activity was expressed during pre-incubation of enzyme with inhibitor at pH 6.9 and 37°C. Isoelectric focusing of purified inhibitor showed a single band near pH 4.7. The first 6 amino acids in the N-terminus were recorded as Ala-Ser-Ser-Arg-Phe-Cys (ASSRFC). The purified inhibitor inhibited the α-amylase from the larval midgut of Spodoptera litura up to 86.6%. The α-amylase inhibitors are important seed storage proteins because of their potentiality for exploitation in pest control and crop defense against insect infestation. Their expression at high levels can confer resistance in transgenic legumes, which could be exploited for crop improvement.  相似文献   

2.
Alpha-amylase inhibitor (alpha AI) protects seeds of the common bean (Phaseolus vulgaris) against predation by certain species of bruchids such as the cowpea weevil (Callosobruchus maculatus) and the azuki bean weevil (Callosobruchus chinensis), but not against predation by the bean weevil (Acanthoscelides obtectus) or the Mexican bean weevil (Zabrotes subfasciatus), insects that are common in the Americas. We characterized the interaction of alpha AI-1 present in seeds of the common bean, of a different isoform, alpha AI-2, present in seeds of wild common bean accessions, and of two homologs, alpha AI-Pa present in seeds of the tepary bean (Phaseolus acutifolius) and alpha AI-Pc in seeds of the scarlet runner bean (Phaseolus coccineus), with the midgut extracts of several bruchids. The extract of the Z. subfasciatus larvae rapidly digests and inactivates alpha AI-1 and alpha AI-Pc, but not alpha AI-2 or alpha AI-Pa. The digestion is caused by a serine protease. A single proteolytic cleavage in the beta subunit of alpha AI-1 occurs at the active site of the protein. When degradation is prevented, alpha AI-1 and alpha AI-Pc do not inhibit the alpha-amylase of Z. subfasciatus, although they are effective against the alpha-amylase of C. chinensis. Alpha AI-2 and alpha AI-Pa, on the other hand, do inhibit the alpha-amylase of Z. subfasciatus, suggesting that they are good candidates for genetic engineering to achieve resistance to Z. subfasciatus.  相似文献   

3.
This glasshouse study used an improved larval measurement procedure to evaluate the impact of transgenic pea, Pisum sativum L., seeds expressing a-amylase inhibitor (AI)-1 or -2 proteins on pea weevil, Bruchus pisorum L. Seeds of transgenic 'Laura' and 'Greenfeast' peas expressing alpha-(AI)-1 reduced pea weevil survival by 93-98%. Larval mortality occurred at an early instar. Conversely, in nontransgenic cultivars, approximately 98-99% of the pea weevils emerged as adults. By measuring the head capsule size, we determined that larvae died at the first to early third instar in alpha-(AI)-1 transgenic peas, indicating that this inhibitor is highly effective in controlling this insect. By contrast, transgenic Laura and 'Dundale' expressing alpha-(AI)-2 did not affect pea weevil survival, but they did delay larval development. After 77 d of development, the head capsule size indicated that the larvae were still at the third instar stage in transgenic alpha-(AI)-2 peas, whereas adult bruchids had developed in the nontransgenic peas.  相似文献   

4.
It is hypothesized that since protein α-amylase inhibitor (α-AI) and stimulator might be present together in red kidney bean (Phaseolus vulgaris L.) seeds, their in vitro interactions might influence their detection and quantification. Assay of α-AI using extracts from the embryonic axes revealed an unexpected finding in that the extracts stimulated rather than inhibited α-amylase activity. The cotyledon extracts exhibited inhibitory or enhancement effect on α-amylase activity depending on whether prior to the α-amylase assay they had been boiled for 10 min or not. Phytohemagglutinin (PHA-L in particular) is implicated in the present study as a stimulator of α-amylase activity co-extracted with α-AI from red kidney bean cotyledons. The importance of these findings is discussed in relation to the possible widespread occurrence of protein α-amylase stimulator in seeds and other plant parts.  相似文献   

5.
Both α-amylase inhibitor-2 (αAI-2) and arcelin have been implicated in resistance of wild common bean (Phaseolus vulgaris L.) to the Mexican bean weevil (Zabrotes subfasciatus Boheman). Near isogenic lines (NILs) for arcelin 1–5 were generated by backcrossing wild common bean accessions with a cultivated variety. Whereas seeds of a wild accession (G12953) containing both αAI-2 and arcelin 4 were completely resistant to Z. subfasciatus, those of the corresponding NIL were susceptible to infestation, suggesting that the principal determinant of resistance was lost during backcrossing. Three independent lines of transgenic azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] expressing αAI-2 accumulated high levels of this protein in seeds. The expression of αAI-2 in these lines conferred protection against the azuki bean weevil (Callosobruchus chinensis L.), likely through inhibition of larval digestive α-amylase. However, although the seed content of αAI-2 in these transgenic lines was similar to that in a wild accession of common bean (G12953), it did not confer a level of resistance to Z. subfasciatus similar to that of the wild accession. These results suggest that αAI-2 alone does not provide a high level of resistance to Z. subfasciatus. However, αAI-2 is an effective insecticidal protein with a spectrum of activity distinct from that of αAI-1, and it may prove beneficial in genetic engineering of insect resistance in legumes.  相似文献   

6.
Insect α-amylase inhibiting and/or growth inhibiting activities of proteinaceous inhibitors from red kidney bean (Phaseolus vulgaris) and hard red winter wheat (Triticum aestivum) were examined. The bean inhibitor was most effectivein vitro against α-amylases from the red flour beetle (Tribolium castaneum) and the confused flour beetle (T. confusum), followed by those from the rice weevil (Sitophilus oryzae) and yellow mealworm (Tenebrio molitor). The insect enzymes were from two- to 50-fold more susceptible than human salivary α-amylase. When the inhibitors were added at a 1% level to a wheat flour plus germ diet, the growth of red flour beetle larvae was slowed relative to that of the control group of larvae, with the bean inhibitor being more effective than the wheat inhibitor. Development of both the red flour beetle and flat grain beetle (Cryptolestes pusillus) was delayed by 1% bean inhibitor, but development of the sawtoothed grain beetle (Oryzaephilus surinamensis) and lesser grain borer (Rhyzopertha dominica) was not affected by either the bean or wheat inhibitor at the 1% level. Rice weevil adults fed a diet containing 1% bean or wheat inhibitor exhibited more mortality than weevils fed the control diet. When the wheat amylase inhibitor was combined with a cysteine protease inhibitor, E-64, and fed to red flour beetle larvae, a reduction in the growth rate and an increase in the time required for adult eclosion occurred relative to larvae fed either of the inhibitors separately. The bean inhibitor was just as effective alone as when it was combined with the protease inhibitor. These results demonstrate that plant inhibitors of insect digestive enzymes act as growth inhibitors of insects and possibly as plant defense proteins, and open the way to the use of the genes of these inhibitors for genetically improving the resistance of cereals to storage pests. Cooperative investigation between the Agricultural Research Service, the University of California, San Diego, and the Kansas Agricultural Experiment Station (Contribution no. 94-416-J). Supported in part by a grant from the Ministry of Education and Science, Spain-Fulbright Program to J.J.P. Mention of a proprietary product does not constitute a recommendation or endorsement by the USDA. The USDA is an equal opportunity/affirmative action employer and all agency services are available without discrimination.  相似文献   

7.
Bruchid larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil and the Mexican bean weevil, are pests that damage stored seeds. Plant lectins have been implicated as antibiosis factors against insects, particularly the cowpea weevil, Callosobruchus maculatus. Talisia esculenta lectin (TEL) was tested for anti-insect activity against C. maculatus and Zabrotes subfasciatus larvae. TEL produced ca. 90% mortality to these bruchids when incorporated in an artificial diet at a level of 2% (w/w). The LD(50) and ED(50) for TEL was ca. 1% (w/w) for both insects. TEL was not digested by midgut preparations of C. maculatus and Z. subfasciatus. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

8.
The effects of water deficit and high temperature on the production of alpha-amylase inhibitor 1 (alpha-AI-1) were studied in transgenic peas (Pisum sativum L.) that were developed to control the seed-feeding pea weevil (Bruchus pisorum L., Coleoptera: Bruchidae). Transgenic and non-transgenic plants were subjected to water-deficit and high-temperature treatments under controlled conditions in the glasshouse and growth cabinet, beginning 1 week after the first pods were formed. In the water-deficit treatments, the peas were either adequately watered (control) or water was withheld after first pod formation. The high-temperature experiments were performed in two growth cabinets, one maintained at 27/22 degrees C (control) and one at 32/27 degrees C day/night temperatures, with the vapour pressure deficit maintained at 1.3 kPa. The plants exposure to high temperatures and water deficit produced 27% and 79% fewer seeds, respectively, than the controls. In the transgenic peas the level of alpha-AI-1 as a percentage of total protein was not influenced by water stress, but was reduced on average by 36.3% (the range in two experiments was 11-50%) in the high-temperature treatment. Transgenic and non-transgenic pods of plants grown at 27/22 degrees C and 32/27 degrees C were inoculated with pea weevil eggs to evaluate whether the reduction in level of alpha-AI-1 in the transgenic pea seeds affected pea weevil development and survival. At the higher temperatures, 39% of adult pea weevil emerged, compared to 1.2% in the transgenic peas grown at the lower temperatures, indicating that high temperature reduced the protective capacity of the transgenic peas.  相似文献   

9.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmoLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

10.
We describe a robust and reproducible Agrobacterium-mediated chickpea transformation method based on kanamycin selection, and its use to introduce the bean AI1 gene into a desi type of chickpea. Bean AI1 was specifically expressed in the seeds, accumulated up to 4.2% of seed protein and was processed to low molecular weight polypeptides as occurs in bean seeds. The transgenic protein was active as an inhibitor of porcine -amylase in vitro. Transgenic chickpeas containing -AI1 strongly inhibited the development of Callosobruchus maculatus and C. chinensis (Col. : Bruchidae) in insect bioassays.  相似文献   

11.
An artificial maize seed bioassay was developed to evaluate potential resistance factors against the rice weevil, Sitophilus oryzae. Weevils reared in artificial seeds compared to those reared in whole maize seeds: (i) developed faster, (ii) had similar within-seed developmental mortalities, (iii) were lighter in weight upon emergence and (iv) oviposited the same number of eggs. Using this bioassay we found that E-64, a cysteine protease inhibitor, decreased the number of emerged adults per seed and delayed within-seed developmental time, suggesting that the rice weevil utilizes a cysteine protease to digest its dietary protein. Weevils fed inhibitors of trypsin and chymotrypsin, Bowman-Birk and Kunitz inhibitors respectively, developed normally. Para-amino-l-phenylalanine (PAPA), a non-protein amino acid implicated as an insect resistance factor in Vigna vexillata, was lethal at dietary levels of 0.2% (w/w) and higher. An extract from Amaranthus caudatus seeds delayed the developmental time of the rice weevil at dietary levels of 0.2% (w/w) and increased mortality at dietary levels of 1.0% (w/w). Several proteins tested, including Griffonia simplicifolia agglutinin II, phytohemagglutinin extract containing common bean -amylase inhibitor, pokeweed agglutinin, Bacillus thuringiensis CRY1A/CRY1B endotoxin, and an -amylase inhibitor from wheat, had no effect on the rice weevil. The artificial maize seed bioassay was adapted by pelleting the seed for use with an ultrasonic insect feeding monitor to determine the finding activity of rice weevils as they developed from egg hatch to pupation.  相似文献   

12.
Bean (Phaseolus vulgaris L.) seeds contain a putative plant defense protein that inhibits insect and mammalian but not plant α-amylases. We recently (J Moreno, MJ Chrispeels [1989] Proc Natl Acad Sci USA 86:7885-7889) presented strong circumstantial evidence that this α-amylase inhibitor (αAI) is encoded by an already-identified lectin gene whose product is referred to as lectin-like-protein (LLP). We have now made a chimeric gene consisting of the coding sequence of the lectin gene that encodes LLP and the 5′ and 3′ flanking sequences of the lectin gene that encodes phytohemagglutinin-L. When this chimeric gene was expressed in transgenic tobacco (Nicotiana tabacum), we observed in the seeds a series of polypeptides (Mr 10,000-18,000) that cross-react with antibodies to the bean α-amylase inhibitor. Most of these polypeptides bind to a pig pancreas α-amylase affinity column. An extract of the seeds of the transformed tobacco plants inhibits pig pancreas α-amylase activity as well as the α-amylase present in the midgut of Tenebrio molitor. We suggest that introduction of this lectin gene (to be called αai) into other leguminous plants may be a strategy to protect the seeds from the seed-eating larvae of Coleoptera.  相似文献   

13.
Vally K  Sharma R 《Plant physiology》1995,107(2):401-405
In pearl millet (Pennisetum americanum) seedlings light induces the appearance of a leaf [alpha]-amylase isozyme. The leaf [alpha]-amylase isozyme was present in enriched amounts in isolated chloroplast but it could not be detected in isolated etioplasts. The chloroplast [alpha]-amylase was present in both mesophyll and bundle-sheath chloroplasts. Preliminary characterization indicated that molecular properties of chloroplast [alpha]-amylase were like those of a typical [alpha]-amylase. The plastidic [alpha]-amylase had a molecular mass of 46 kD, pH optimum of 6.2, required Ca2+ for activity and thermostability, but lost activity in the presence of ethylenediaminetetracetate. Plastidic [alpha]-amylase activity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis could be renatured in situ by Triton X-100. Western blot analysis demonstrated that this protein was antigenically similar to a maize seed [alpha]-amylase. In vivo [35S]methionine labeling of bundle-sheath strands isolated from light-grown leaves followed by immunoprecipitation revealed that bundlesheath strands synthesized plastidic [alpha]-amylase de novo.  相似文献   

14.
Common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human consumption. Proteomic studies in legumes have increased significantly in the last years but few studies have been performed to date in P. vulgaris. We report here a proteomic analysis of bean seeds by two-dimensional electrophoresis (2-DE). Three different protein extraction methods (TCA-acetone, phenol and the commercial clean-up kit) were used taking into account that the extractome can have a determinant impact on the level of quality of downstream protein separation and identification. To demonstrate the quality of the 2-DE analysis, a selection of 50 gel spots was used in protein identification by mass spectrometry (MALDI-TOF MS and MALDI-TOF/TOF). The results showed that a considerable proportion of spots (70%) were identified in spite of incomplete genome/protein databases for bean and other legume species. Most identified proteins corresponded to storage protein, carbohydrate metabolism, defense and stress response, including proteins highly abundant in the seed of P. vulgaris such as the phaseolin, the phytohemagglutinin and the lectin-related α-amylase inhibitor.  相似文献   

15.
蚕豆象的生物学特性   总被引:1,自引:0,他引:1  
在武昌,蚕豆象Bruchus rufimanus Boheman每年发生一代,以成虫越冬。成虫必须取食蚕豆花后才能正常交配和产卵。4月为交配盛期。4月中、下旬为产卵盛期,最喜欢把卵产到生长已有1l—20天的嫩蚕豆荚上,但不在豌豆荚上产卵。产卵历期约为9天。4月下旬至5月上旬为孵化盛期。幼虫共四龄,在豆粒内的死亡率随着单个豆粒上侵入孔的增多而增高。8月为化蛹盛期,8月中旬到9月上旬为羽化盛期。羽化出的成虫绝大部分藏在豆粒内越冬。从卵发育到成虫羽化约需120天。成虫寿命一般为212天,最长达295天,但不能度过两个冬季。  相似文献   

16.
In search of a possible mechanism of inhibition which might be responsible for the different specificities of the three isoforms of the bean (Phaseolus vulgaris) α-amylase inhibitor α-AI1, α-AI2 and α-AIL (EC 3.2.1.1), the two isoforms α-AI2 and α-AIL were modelled from the atomic co-ordinates of α-AI1 in the α-AI1/PPA complex and docking experiments were performed with pig pancreatic α-amylase (PPA) and the modelled amylase from Zabrotes subfasciatus (ZSA). The modelled α-AI2 penetrates without any steric hindrance in the substrate cleft of both enzymes but the possible hydrogen bonds between PPA and α-AI2 seem too few to maintain the stability of the complex. α-AIL, which differs from α-AI1 and α-AI2 by the absence of post-translational proteolytic cleavage and the occurrence of two additional loops of fifteen and six residues, creates steric clashes with PPA and ZSA that prevent its penetration into the substrate cleft of the enzyme. Docking experiments explain at the molecular level the specificity of α-amylase inhibitor isoforms towards enzymes of different origins. In addition, they explain why, according to its unprocessed and more bulky character, α-AIL was previously shown to be inactive on all α-amylases assayed. In fact, this last isoform is now considered as an evolutionary intermediate between phytohaemagglutinins, arcelins and α-amylase inhibitors.  相似文献   

17.
The degree of protection against insect feeding conferred upon transgenic strawberry lines expressing the Cowpea trypsin inhibitor was evaluated under glasshouse conditions. Insect bioassays were carried out using vine weevil (Otiorhynchus sulcatus) in two experiments and in both experiments there was a highly significant reduction in damage by weevil larvae on the transgenic lines.  相似文献   

18.
Soya bean cultivars ‘Altona’ and ‘Chestnut’have active but quite low levels of -amylase. Activity was assayedwith specific substrates, oxidized amylose and ß-limitdextrin, which were resistant to attack by ß-amylase.During seed development -amylase activity increased to a maximumin both cultivars and then declined towards maturity. Matureand germinating seeds retain low activities of -amylase. Gelelectrophoresis separated the -amylase activity into six majorbands which occurred in both cultivars. The isozyme patternwas quite similar for developing, mature and germinating seed.although the relative proportion of activity in the variousbands changed somewhat. Starch phosphorylase was not detectedin any soya bean seed samples tested, but good activity wasfound in potato tuber extracts used as a control. Mixing experimentsusing soya bean and potato extracts indicated there were noinhibiting factors in soya bean seed extracts. Soya bean seedextracts probably do not contain starch phosphorylase. Glycine max (L.), Merr, soya bean, -amylase, isozymes, phosphorylase  相似文献   

19.
Various species of bruchid beetles including Callosobruchus chinensis, C. maculatus and C. analis cause postharvest damage of azuki bean seeds, an important East Asian grain legume. The -amylase in the midguts of these insects is inhibited by the -amylase inhibitor (AI) present in common bean seeds. Transformation of azuki bean with the AI gene driven by the promoter of phytohemagglutinin results in high levels of AI in the seeds and the complete block of bruchid development on the seeds. Zabrotes subfasciatus, a South and Central American bruchid that is a storage pest of common bean, develops normally on the transgenic azuki bean.  相似文献   

20.
Cowpea is one of the important grain legumes. Storage pests, Callosobruchus maculatus and C. chinensis cause severe damage to the cowpea seeds during storage. We employ a highly efficient Agrobacterium-mediated cowpea transformation method for introduction of the bean (Phaseolus vulgaris) α-amylase inhibitor-1 (αAI-1) gene into a commercially important Indian cowpea cultivar, Pusa Komal and generated fertile transgenic plants. The use of constitutive expression of additional vir genes in resident pSB1 vector in Agrobacterium strain LBA4404, thiol compounds during cocultivation and a geneticin based selection system resulted in twofold increase in stable transformation frequency. Expression of αAI-1 gene under bean phytohemagglutinin promoter results in accumulation of αAI-1 in transgenic seeds. The transgenic protein was active as an inhibitor of porcine α-amylase in vitro. Transgenic cowpeas expressing αAI-1 strongly inhibited the development of C. maculatus and C. chinensis in insect bioassays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号