首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Urea transporter UT-B has been proposed to be the major urea transporter in erythrocytes and kidney-descending vasa recta. The mouse UT-B cDNA was isolated and encodes a 384-amino acid urea-transporting glycoprotein expressed in kidney, spleen, brain, ureter, and urinary bladder. The mouse UT-B gene was analyzed, and UT-B knockout mice were generated by targeted gene deletion of exons 3-6. The survival and growth of UT-B knockout mice were not different from wild-type littermates. Urea permeability was 45-fold lower in erythrocytes from knockout mice than from those in wild-type mice. Daily urine output was 1.5-fold greater in UT-B- deficient mice (p < 0.01), and urine osmolality (U(osm)) was lower (1532 +/- 71 versus 2056 +/- 83 mosM/kg H(2)O, mean +/- S.E., p < 0.001). After 24 h of water deprivation, U(osm) (in mosM/kg H(2)O) was 2403 +/- 38 in UT-B null mice and 3438 +/- 98 in wild-type mice (p < 0.001). Plasma urea concentration (P(urea)) was 30% higher, and urine urea concentration (U(urea)) was 35% lower in knockout mice than in wild-type mice, resulting in a much lower U(urea)/P(urea) ratio (61 +/- 5 versus 124 +/- 9, p < 0.001). Thus, the capacity to concentrate urea in the urine is more severely impaired than the capacity to concentrate other solutes. Together with data showing a disproportionate reduction in the concentration of urea compared with salt in homogenized renal inner medullas of UT-B null mice, these data define a novel "urea-selective" urinary concentrating defect in UT-B null mice. The UT-B null mice generated for these studies should also be useful in establishing the role of facilitated urea transport in extrarenal organs expressing UT-B.  相似文献   

4.
Aging is commonly associated with defective urine-concentrating ability. The present study examined how the kidney and the brain of senescent (30-mo-old) female WAG/Rij rats respond to dehydration induced by 2 days of water deprivation in terms of urea transporter (UT) regulation. In euhydrated situation, senescent rats exhibited similar vasopressin plasma level but lower urine osmolality and papillary urea concentration and markedly reduced kidney UT-A1, UT-A3, and UT-B1 abundances compared with adult (10-mo-old) rats. Senescent rats responded to dehydration similarly to adult rats by a sixfold increase in vasopressin plasma level. Their papillary urea concentration was doubled, without, however, attaining that of dehydrated adult rats. Such an enhanced papillary urea sequestration occurred with a great fall of both UT-A1 and UT-A3 abundances in the tip of inner medulla and an increased UT-A1 abundance in the base of inner medulla. UT-A2 and UT-B1 were unchanged. These data suggest that the inability of control and thirsted senescent rats to concentrate urine as much as their younger counterparts derives from lower papillary urea concentration. In aging brain, UT-B1 abundance was increased twofold together with a fourfold increase in aquaporin-4 abundance. Dehydration did not alter the abundance of these transporters.  相似文献   

5.
6.
7.
This review summarizes what is currently known about urea transporters in fishes in the context of their physiology and evolution within the vertebrates. The existence of urea transporters has been investigated in red blood cells and hepatocytes of fish as well as in renal and branchial cells. Little is known about urea transport in red blood cells and hepatocytes, in fact, urea transporters are not believed to be present in the erythrocytes of elasmobranchs nor in teleost fish. What little physiological evidence there is for urea transport across fish hepatocytes is not supported by molecular evidence and could be explained by other transporters. In contrast, early findings on elasmobranch renal urea transporters were the impetus for research in other organisms. Urea transport in both the elasmobranch kidney and gill functions to retain urea within the animal against a massive concentration gradient with the environment. Information on branchial and renal urea transporters in teleost fish is recent in comparison but in teleosts urea transporters appear to function for excretion and not retention as in elasmobranchs. The presence of urea transporters in fish that produce a copious amount of urea, such as elasmobranchs and ureotelic teleosts, is reasonable. However, the existence of urea transporters in ammoniotelic fish is curious and could likely be due to their ability to manufacture urea early in life as a means to avoid ammonia toxicity. It is believed that the facilitated diffusion urea transporter (UT) gene family has undergone major evolutionary changes, likely in association with the role of urea transport in the evolution of terrestriality in the vertebrates.  相似文献   

8.
Molecular Mechanisms of Urea Transport   总被引:6,自引:0,他引:6  
Physiologic data provided evidence for specific urea transporter proteins in red blood cells and kidney inner medulla. During the past decade, molecular approaches resulted in the cloning of several urea transporter cDNA isoforms derived from two gene families: UT-A and UT-B. Polyclonal antibodies were generated to the cloned urea transporter proteins, and their use in integrative animal studies resulted in several novel findings, including: (1) UT-B is the Kidd blood group antigen; (2) UT-B is also expressed in many non-renal tissues and endothelial cells; (3) vasopressin increases UT-A1 phosphorylation in rat inner medullary collecting duct; (4) the surprising finding that UT-A1 protein abundance and urea transport are increased in the inner medulla during conditions in which urine concentrating ability is reduced; and (5) UT-A protein abundance is increased in uremia in both liver and heart. This review will summarize the knowledge gained from studying molecular mechanisms of urea transport and from integrative studies into urea transporter protein regulation.  相似文献   

9.
Urea transport in the kidney is mediated by a family of transporter proteins, including renal urea transporters (UT-A) and erythrocyte urea transporters (UT-B). We aimed to determine whether hydration status affects the subcellular distribution of urea transporters. Male Sprague-Dawley rats were divided into three groups: dehydrated rats (WD) given minimum water, hydrated rats (WL) given 3% sucrose in water for 3 days before death, and control rats given free access to water. We labeled kidney sections with antibodies against UT-A1 and UT-A2 (L194), UT-A3 (Q2), and UT-B using preembedding immunoperoxidase and immunogold methods. In control animals, UT-A1 and UT-A3 immunoreactivities were observed throughout the cytoplasm in inner medullary collecting duct (IMCD) cells, and weak labeling was observed on the basolateral plasma membrane. UT-A2 immunoreactivity in the descending thin limbs (DTL) was observed mainly on the apical and basolateral membranes of type I epithelium, and very faint labeling was observed in the long-loop DTL at the border between the outer and inner medulla. UT-A1 immunoreactivity intensity was markedly lower, and UT-A3 immunoreactivity was higher in IMCD of WD vs. controls. UT-A2 immunoreactivity intensities in the plasma membrane and cytoplasm of type I, II, and III epithelia of DTL were greater in WD vs. controls. In contrast, UT-A1 expression was greater and UT-A2 and UT-A3 expressions were lower in WL vs. controls. The subcellular distribution of UT-A in DTL or IMCD did not differ between control and experimental animals. UT-B was expressed in the plasma membrane of the descending vasa recta of both control and experimental animals. UT-B intensity was higher in WD and lower in WL vs. controls. These data indicate that changes in hydration status over 3 days affected urea transporter protein expression without changing its subcellular distribution.  相似文献   

10.
Urea transport in the kidney is important for the production of concentrated urine. This process is mediated by urea transporters (UTs) encoded by two genes, UT-A (Slc14a2) and UT-B (Slc14a1). Our previous study demonstrated that cetaceans produce highly concentrated urine than terrestrial mammals, and that baleen whales showed higher concentrations of urinary urea than sperm whales. Therefore, we hypothesized that cetaceans have unique actions of UTs to maintain fluid homeostasis in marine habitat. Kidney samples of common minke (Balaenoptera acutorostrata), sei (B. borealis), Bryde's (B. brydei) and sperm whales (Physeter macrocephalus) were obtained to determine the nucleotide sequences of mRNAs encoding UT. The sequences of 2.5-kb cDNAs encode 397-amino acid proteins, which are 90-94% identical to the mammalian UT-A2s. Two putative glycosylation sites are conserved between the whales and the terrestrial mammals, whereas consensus sites for protein kinases are not completely conserved; only a single protein kinase A consensus site was identified in the whale UT-A2s. Two protein kinase C consensus sites are present in the baleen whale UT-A2s, however, a single protein kinase C consensus site was identified in the sperm whale UT-A2. These different phosphorylation sites of whale UT-A2s may result in the high concentrations of urinary urea in whales, by reflecting their urea permeability.  相似文献   

11.
12.
13.
14.
Jk (kidd) blood group antigens are carried by the urea transporter UT-B[1,2]. The Jknull phenotype, lack-ing urea permeability in erythrocytes[3,4], has a very low frequency in all populations except Polynesians and Finns[5]. In Japan, only 14 individuals with Jk (a-b-) phenotype were identified from 638460 screened donor’s blood samples using the 2 mol/L urea solution hemolysis test[6]. The frequency of Jknull is 0.27% in Polynesian, about 0.03% in Finland[7], and extremely rare in Fran…  相似文献   

15.

Background

Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line.

Methodology/Principal Findings

Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis.

Conclusions/Significance

UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.  相似文献   

16.
The process of urea nitrogen salvaging plays a vital role in the symbiotic relationship between mammals and their intestinal bacteria. The first step in this process requires the movement of urea from the mammalian bloodstream into the gastrointestinal tract lumen via specialized proteins known as facilitative urea transporters. In this study, we examined both transepithelial urea fluxes and urea transporter protein abundance along the length of the rat gastrointestinal tract. Urea flux experiments that used rat gastrointestinal tissues showed significantly higher transepithelial urea transport was present in caecum and proximal colon (P < 0.01, n = 8, analysis of variance [ANOVA]). This large urea flux was significantly inhibited by 1,3,dimethylurea (P < 0.001, n = 8, ANOVA) and thiourea (P < 0.05, n = 6, unpaired t-test), both known blockers of facilitative urea transporters. Immunoblotting analysis failed to detect any UT-A protein within rat gastrointestinal tissue protein samples. In contrast, a 30-kDa UT-B1 protein was strongly detected in both caecum and proximal colon samples at significantly higher levels compared to the rest of the gastrointestinal tract (P < 0.01, n = 4, ANOVA). We therefore concluded that UT-B1 mediates the transepithelial movement of urea that occurs in specific distal regions of the rat gastrointestinal tract.  相似文献   

17.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

18.
The UT-A (SLC14a2) and UT-B (SLC14a1) genes encode a family of specialized urea transporter proteins that regulate urea movement across plasma membranes. In this report, we describe the structure of the bovine UT-B (bUT-B) gene and characterize UT-B expression in bovine rumen. Northern analysis using a full-length bUT-B probe detected a 3.7-kb UT-B signal in rumen. RT-PCR of bovine mRNA revealed the presence of two UT-B splice variants, bUT-B1 and bUT-B2, with bUT-B2 the predominant variant in rumen. Immunoblotting studies of bovine rumen tissue, using an antibody targeted to the NH2-terminus of mouse UT-B, confirmed the presence of 43- to 54-kDa UT-B proteins. Immunolocalization studies showed that UT-B was mainly located on cell plasma membranes in epithelial layers of the bovine rumen. Ussing chamber measurements of ruminal transepithelial transport of (14)C-labeled urea indicated that urea flux was characteristically inhibited by phloretin. We conclude that bUT-B is expressed in the bovine rumen and may function to transport urea into the rumen as part of the ruminant urea nitrogen salvaging process.  相似文献   

19.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with P(s)>5.0 x 10(-6) cm/s at 10 degrees C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (E(a)>10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by >60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

20.
This study investigated whether urea transport mechanisms were present in the gills of the ammoniotelic plainfin midshipman (Porichthys notatus), similar to those recently documented in its ureotelic relative (family Batrachoididae), the gulf toadfish (Opsanus beta). Midshipmen were fitted with internal urinary and caudal artery catheters for repetitive sampling of urine and blood in experiments and radiolabeled urea analogues ([(14)C]-thiourea and [(14)C]-acetamide) were used to evaluate the handling of these substances. Isosmotically balanced infusions of urea were used to raise plasma and urine urea concentrations to levels surpassing physiological levels by 8.5-fold and 6.4-fold, respectively. Despite these high urea levels, there was no observable transport maximum in either renal or branchial urea excretion rate, a result mirrored by the total uptake of fish exposed to a range of environmental urea concentrations. Permeability to urea appeared to be symmetrical in the two directions. At comparable plasma concentrations the branchial clearance rate of acetamide was 74% that of urea while branchial clearance rate of thiourea was 55% that of urea. For influx, the comparable values were 60% and 36%, indicating the same pattern. In contrast, the secretion clearance rate of acetamide by the kidney was 56% that of urea while the rate of thiourea secretion clearance was 137% greater than that of urea, with both urea and thiourea being more concentrated in the urine than in the plasma. In addition, the secretion clearance rates of thiourea and urea were significantly greater than those of water and Cl(-), whereas acetamide, water and Cl(-) were found equally in the plasma and urine, appearing to passively equilibrate between the two fluids. Based on our findings, there appear to be two distinct transport mechanisms involved in urea excretion in the plainfin midshipmen, one in the gill (a facilitated diffusion type transporter) and one in the kidney (an active transport mechanism), each of which does not saturate even at plasma urea concentrations that greatly exceed physiological levels. These transporters appear to be similar to those in the midshipman's ureotelic relative, the gulf toadfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号