首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Tumor necrosis factor-alpha (TNF) and the ligand for receptor activator of NF-kappaB (RANKL) are abundant in sites of inflammatory bone erosion. Because these cytokines are potent osteoclastogenic factors and because their signaling pathways are considerably overlapping, we postulated that under pro-inflammatory conditions RANKL and TNF might synergistically orchestrate enhanced osteoclastogenesis via cooperative mechanisms. We found TNF, via TNF type 1 receptor (TNFr1), prompts robust osteoclastogenesis by osteoclast precursors pretreated with RANKL, and deletion of TNFr1 abrogates this response. Enhanced osteoclastogenesis is associated with high expression of otherwise TNF and RANKL-induced mediators, including c-Src, TRAF2, TRAF6, and MEKK-1, levels of which were notably reduced in TNFr1 knockouts. Recruitment of TRAFs and MEKK1 leads to activation of downstream pathways, primarily I kappa B/NF-kappa B, ERKs, and cJun/AP-1. Consistent with impaired osteoclastogenesis and reduced expression of TRAFs and MEKK1, we found that phosphorylation and activation of I kappa B, NF-kappa B, ERKs, and cJun/AP-1 are severely reduced in RANKL-treated TNFr1-null osteoclast precursors compared with wild type counterparts. Finally, we found that TNF and RANKL synergistically up-regulate RANK expression in wild type precursors, whereas basal and stimulated levels of RANK are significantly lower in TNFr1 knockout cells. Our data suggest that exuberant TNF-induced osteoclastogensis is the result of coupling between RANK and TNFr1 and is dependent upon signals transmitted by the latter receptor.  相似文献   

5.
6.
7.
本研究检测了绝经后骨质疏松症妇女的肿瘤坏死因子-α(TNF-α)和雌激素水平,并探讨了TNF-α对破骨前体细胞RAW264.7中破骨细胞标志物核因子κB受体激活因子(nuclear factor kappa-B, RANK)、组织蛋白酶K (Cathepsin K, CTSK)和凝血酶受体激活肽(thrombin receptor activating peptide, TRAP)以及核因子-κB (NF-κB)亚基(p65)和NF-κB抑制蛋白(IκBα)的影响。研究结果表明,绝经后骨质疏松症患者的TNF-α水平显著升高,而雌二醇水平显著降低。核因子κB受体激活因子配体(receptor activator for NF-κBligand, RANKL)处理1周后,破骨前体细胞RAW264.7中破骨细胞标志物RANK、CTSK和TRAP的mRNA和蛋白高度表达。与RANKL对照组相比,TNF-α处理可上调RANK、CTSK和TRAP m RNA的表达。但是,仅TNF-α不能诱导培养的RAW264.7细胞分化为破骨细胞成。TNF-α以剂量依赖性方式诱导NF-κB亚基p65和IκBα磷酸化,而NF-κB抑制剂处理则有效降低了RANK和TRAP的表达。本研究结论表明,绝经后骨质疏松症中TNF-α通过激活NF-κB来促进RANKL诱导的破骨细胞形成。  相似文献   

8.
RAW 264.7 macrophage cells differentiate into osteoclast‐like cells in the presence of RANKL. Participation of M‐CSF in RANKL‐induced osteoclast formation of RAW 264.7 cells was examined. TRAP‐positive osteoclast‐like cells appeared in RAW 264.7 cells cultured in the presence of RANKL. RANKL‐induced osteoclast formation was markedly inhibited by anti‐M‐CSF antibody. RANKL augmented M‐CSF mRNA expression and M‐CSF production in RAW 264.7 cells. Further, anti‐M‐CSF antibody inhibited the expression of RANK, c‐fms, c‐fos and TRAP mRNA in RANKL‐stimulated RAW 264.7 cells. However, anti‐M‐CSF antibody did not affect the expression of DC‐STAMP in the stimulated cells. Therefore, RANKL was suggested to induce osteoclast formation in RAW 264.7 cells via augmented production of M‐CSF. The putative role of M‐CSF in RANKL‐induced osteoclast formation of RAW 264.7 cells is discussed.  相似文献   

9.
Yen ML  Hsu PN  Liao HJ  Lee BH  Tsai HF 《PloS one》2012,7(6):e38048
Human osteoclast formation from mononuclear phagocyte precursors involves interactions between tumor necrosis factor (TNF) ligand superfamily members and their receptors. Recent evidence indicates that in addition to triggering apoptosis, the TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation. To understand TRAIL-mediated signal transduction mechanism in osteoclastogenesis, we demonstrated that TRAIL induces osteoclast differentiation via a Tumor necrosis factor receptor-associated factor 6 (TRAF-6)-dependent signaling pathway. TRAIL-induced osteoclast differentiation was significantly inhibited by treatment with TRAF-6 siRNA and TRAF6 decoy peptides in both human monocytes and murine RAW264.7 macrophage cell lines, as evaluated in terms of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and bone resorption activity. Moreover, TRAIL-induced osteoclast differentiation was also abolished in TRAF6 knockout bone marrow macrophages. In addition to induction of NFATc1, treatment of TRAIL also induced ubiquitination of TRAF6 in osteoclast differentiation. Thus, our data demonstrate that TRAIL induces osteoclastic differentiation via a TRAF-6 dependent signaling pathway. This study suggests TRAF6-dependent signaling may be a central pathway in osteoclast differentiation, and that TNF superfamily molecules other than RANKL may modify RANK signaling by interaction with TRAF6-associated signaling.  相似文献   

10.
Periodontitis is characterized by chronic inflammation and osteoclast‐mediated bone loss regulated by the receptor activator of nuclear factor‐κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). The aim of this study was to investigate the effect of aminothiazoles targeting prostaglandin E synthase‐1 (mPGES‐1) on RANKL‐ and lipopolysaccharide (LPS)‐mediated osteoclastogenesis and prostaglandin E2 (PGE2) production in vitro using the osteoclast precursor RAW 264.7 cells. RAW 264.7 cells were treated with RANKL or LPS alone or in combination with the aminothiazoles 4‐([4‐(2‐naphthyl)‐1,3‐thiazol‐2‐yl]amino)phenol (TH‐848) or 4‐(3‐fluoro‐4‐methoxyphenyl)‐N‐(4‐phenoxyphenyl)‐1,3‐thiazol‐2‐amine (TH‐644). Aminothiazoles significantly decreased the number of multinucleated tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclast‐like cells in cultures of RANKL‐ and LPS‐stimulated RAW 264.7 cells, as well as reduced the production of PGE2 in culture supernatants. LPS‐treatment induced mPGES‐1 mRNA expression at 16 hrs and the subsequent PGE2 production at 72 hrs. Conversely, RANKL did not affect PGE2 secretion but markedly reduced mPGES‐1 at mRNA level. Furthermore, mRNA expression of TRAP and cathepsin K (CTSK) was reduced by aminothiazoles in RAW 264.7 cells activated by LPS, whereas RANK, OPG or tumour necrosis factor α mRNA expression was not significantly affected. In RANKL‐activated RAW 264.7 cells, TH‐848 and TH‐644 down‐regulated CTSK but not TRAP mRNA expression. Moreover, the inhibitory effect of aminothiazoles on PGE2 production was also confirmed in LPS‐stimulated human peripheral blood mononuclear cell cultures. In conclusion, the aminothiazoles reduced both LPS‐ and RANKL‐mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells, suggesting these compounds as potential inhibitors for treatment of chronic inflammatory bone resorption, such as periodontitis.  相似文献   

11.
12.
Osteoclasts possess catabolic activity in mineralized tissues and are involved in bone remodeling coordinating with osteoblasts. Although the pathway using receptor and activator of NF-κ B (RANK) and its ligand, RANKL, is known to be essential for osteoclast differentiation, their precise mechanisms are not fully understood. Using DNA microarray technology, we searched for genes that were up-regulated after RANKL stimulation in the macrophage cell line, RAW264.7 cells. A gene, Znf216, which encodes a zinc-finger protein, was detected among those genes up-regulated after RANKL stimulation. Expression of Znf216 was also induced by other cytokines such as TNFα and IL-1β. Although ectopic expression of full-length ZNF216 abrogated osteoclast differentiation, its truncated forms accelerated it. No significant inhibitory effect on the NF-κ B pathway was observed, however. These results suggest that ZNF216 is a potent inhibitory factor for osteoclast differentiation and that the mechanism is unlikely due to direct attenuation of the NF-κ B pathway.  相似文献   

13.
Impaired osteoblast/osteoclast cross-talk and bone structure homeostasis resulting in osteopenia/osteoporosis are often observed in HIV seropositive patients but the causal mechanisms remain unsettled. This study analyzed the biological effects of Tat on peripheral blood monocyte-derived osteoclast differentiation. Tat enhances osteoclast differentiation and activity induced by RANKL plus M-CSF treatment increasing both the mRNA expression of specific osteoclast differentiation markers, such as cathepsin K and calcitonin receptor, and TRAP expression and activity. These Tat-related biological effects may be related, at least in part, to the induction of c-fos expression and AP-1 activity. c-fos up-regulation was triggered by Tat when cell cultures were co-treated with RANKL/M-CSF and an analysis of c-fos promoter with c-fos deletion mutant constructs disclosed specific c-fos promoter domains targeted by Tat. Together, these results show that Tat may be considered a viral factor positively modulating the osteoclastogenesis and then bone resorption activity suggesting a pathogenetic role of this viral protein in the HIV-related osteopenia/osteoporosis.  相似文献   

14.
佛波酯诱导内皮素和FOS/JUN基因在血管内皮细胞中的表达及AP-1结合活性温进坤,魏素珍(河北医学院生化教研室,石家庄050017)张晨晖,姚阿卿,周爱儒,汤健(北京医科大学心血管基础研究所,北京,100083)关键词内皮素基因表达;AP-1转录因...  相似文献   

15.
Hyaluronic acid (HA) is a component of the extracellular matrix that has been shown to play an important role in bone formation, resorption, and mineralization both in vivo and in vitro. We examined the effects of HA at several molecular weights on osteoclast formation and function induced by RANKL (receptor activator of NF-kappa B ligand) in a mouse monocyte cell line (RAW 264.7). HA at M(r) < 8,000 (low molecular weight HA (LMW-HA)) enhanced tartrate-resistant acid phosphatase-positive multinucleated cell formation and tartrate-resistant acid phosphatase activity induced by RANKL in a dose-dependent manner, whereas HA at M(r) > 900,000 (high molecular weight HA (HMW-HA)) showed no effect on osteoclast differentiation. LMW-HA enhanced pit formation induced by RAW 264.7 cells, whereas HMW-HA did not, and LMW-HA stimulated the expression of RANK (receptor activator of NF-kappa B) protein in RAW 264.7 cells. In addition, we found that LMW-HA enhanced the levels of c-Src protein and phosphorylation of ERKs and p38 MAPK in RAW 264.7 cells stimulated with RANKL, whereas the p38 MAPK inhibitor SB203580 inhibited RANKL-induced osteoclast differentiation. This enhancement of c-Src and RANK proteins induced by LMW-HA was inhibited by CD44 function-blocking monoclonal antibody. These results indicate that LMW-HA plays an important role in osteoclast differentiation and function through the interaction of RANKL and RANK.  相似文献   

16.
Yang JH  Amoui M  Lau KH 《FEBS letters》2007,581(13):2503-2508
An osteoclastic protein-tyrosine phosphatase, PTP-oc, shares the same gene with a renal PTP, Glepp1. This study demonstrated that targeted deletion of PTP-oc promoter by homologous recombination in RAW264.7 cells completely abolished PTP-oc expression without affecting Glepp1 expression. This strategy to inhibit PTP-oc function has three advantages over commonly used gene knock down strategies (e.g., small interference RNA). This strategy: (1) yielded cells completely devoid of PTP-oc, (2) had no off-target gene silencing effects, and (3) did not affect Glepp1 expression. The inability of PTP-oc-deficient RAW264.7 cells to undergo RANKL-mediated osteoclastic differentiation confirmed a regulatory role for PTP-oc in RANKL-mediated osteoclast differentiation.  相似文献   

17.
We studied estrogen effects on osteoclastic differentiation using RAW264.7, a murine monocytic cell line. Differentiation, in response to RANKL and colony-stimulating factor 1, was evaluated while varying estrogen receptor (ER) stimulation by estradiol or nonsteroidal ER agonists was performed. The RAW264.7 cells were found to express ERalpha but not ERbeta. In contrast to RANKL, which decreased ERalpha expression and induced osteoclast differentiation, 10 nm estradiol, 3 microm genistein, or 3 microm daidzein all increased ERalpha expression, stimulated cell proliferation, and decreased multinucleation, with the effects of estrogen > or = daidzein > genistein. However, no estrogen agonist reduced RANKL stimulation of osteoclast differentiation markers or its down-regulation of ERalpha expression by more than approximately 50%. Genistein is also an Src kinase antagonist in vitro, but it did not decrease Src phosphorylation in RAW264.7 cells relative to other estrogen agonists. However, both phytoestrogens and estrogen inhibited RANKL-induced IkappaB degradation and NF-kappaB nuclear localization with the same relative potency as seen in proliferation and differentiation assays. This study demonstrates, for the first time, the direct effects of estrogen on osteoclast precursor differentiation and shows that, in addition to effecting osteoblasts, estrogen may protect bone by reducing osteoclast production. Genistein, which activates ERs selectively, inhibited osteoclastogenesis less effectively than the nonselective phytoestrogen daidzein, which effectively reproduced effects of estrogen.  相似文献   

18.
Ryu J  Kim H  Lee SK  Chang EJ  Kim HJ  Kim HH 《Proteomics》2005,5(16):4152-4160
Osteoclasts are cells specialized for bone resorption. For osteoclast activation, tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role. To find new molecules that bind TRAF6 and have a function in osteoclast activation, we employed a proteomic approach. TRAF6-binding proteins were purified from osteoclast cell lysates by affinity chromatography and their identity was disclosed by MS. The identified proteins included several heat shock proteins, actin and actin-binding proteins, and vacuolar ATPase (V-ATPase). V-ATPase, documented for a great increase in expression during osteoclast differentiation, is an important enzyme for osteoclast function; it transports proton to resorption lacunae for hydroxyapatite dissolution. The binding of V-ATPase with TRAF6 was confirmed both in vitro by GST pull-down assays and in osteoclasts by co-immunoprecipitation and confocal microscopy experiments. In addition, the V-ATPase activity associated with TRAF6 increased in osteoclasts stimulated with receptor activator of nuclear factor kappaB ligand (RANKL). Furthermore, a dominant-negative form of TRAF6 abrogated the RANKL stimulation of V-ATPase activity. Our study identified V-ATPase as a TRAF6-binding protein using a proteomics strategy and proved a direct link between these two important molecules for osteoclast function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号