首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteosarcoma cells are recognized by abnormal function that causes a primary bone tumor. Osteosarcoma cells U2OS and SAOS‐2 were analyzed for the expression of cell surface markers. High expression was quantified for hyaloronidase receptor (CD‐44) > moderate for integrins (CD‐51 and ‐61), > and lower for selectins (CD‐62). High mitotic capacity were demonstrated by gene expression (measured by RT‐PCR) and the protein level (measured by FACS) for cFOS, cMYC, and cJUN. The basic definition of osteosarcoma is excessive production of pathological osteoid. Expression of mRNA for matrix genes osteocalcin, osteonectin, and biglycan was studied. Osteocalcin and osteonectin were detected in RNA from primary cultured marrow stromal, trabecular bone cells, and osteosarcoma cell lines (U2OS, SAOS‐2). mRNA for biglycan was detected only in primary cells and MG‐63 cell line and was undetectable in RNA from U2OS, SAOS‐2 osteosarcoma cell lines and by RNA extracted from bone biopsies of osteosarcoma patients. The absence of biglycan message observed in osteosarcoma samples provides evidence for the alterations in the extra cellular matrix which result with non‐mineralized osteoid produced by the osteosarcoma cells. J. Cell. Biochem. 84: 108–114, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
Apert syndrome is an autosomal dominant disease characterized by craniosynostosis and bony syndactyly associated with point mutations (S252W and P253R) in the fibroblast growth factor receptor (FGFR) 2 that cause FGFR2 activation. Here we investigated the role of the S252W mutation of FGFR2 on osteoblastic differentiation. Osteoblastic cells derived from digital bone in two Apert patients with the S252W mutation showed more prominent alkaline phosphatase activity, osteocalcin and osteopontin mRNA expression, and mineralized nodule formation compared with the control osteoblastic cells derived from two independent non-syndromic polydactyly patients. Stable clones of the human MG63 osteosarcoma cells (MG63-Ap and MG63-IIIc) overexpressing a splice variant form of FGFR2 with or without the S252W mutation (FGFR2IIIcS252W and FGFR2IIIc) showed a higher RUNX2 mRNA expression than parental MG63 cells. Furthermore MG63-Ap exhibited a higher osteopontin mRNA expression than did MG63-IIIc. The enhanced osteoblastic marker gene expression and mineralized nodule formation of the MG63-Ap was inhibited by the conditioned medium from the COS-1 cells overexpressing the soluble FGFR2IIIcS252W. Furthermore the FGF2-induced osteogenic response in the mouse calvarial organ culture system was blocked by the soluble FGFR2IIIcS252W. These results show that the S252W mutation in the FGFR2 gene enhances the osteoblast phenotype in human osteoblasts and that a soluble FGFR2 with the S252W mutation controls osteoblast differentiation induced by the S252W mutation through a dominant negative effect on FGFR2 signaling in Apert syndrome.  相似文献   

3.
Osteosarcoma cells are recognized by abnormal function that causes a primary bone tumor. Osteosarcoma cells U(2)OS and SAOS-2 were analyzed for the expression of cell surface markers. High expression was quantified for hyaloronidase receptor (CD-44) > moderate for integrins (CD-51 and -61), > and lower for selectins (CD-62). High mitotic capacity were demonstrated by gene expression (measured by RT-PCR) and the protein level (measured by FACS) for cFOS, cMYC, and cJUN. The basic definition of osteosarcoma is excessive production of pathological osteoid. Expression of mRNA for matrix genes osteocalcin, osteonectin, and biglycan was studied. Osteocalcin and osteonectin were detected in RNA from primary cultured marrow stromal, trabecular bone cells, and osteosarcoma cell lines (U(2)OS, SAOS-2). mRNA for biglycan was detected only in primary cells and MG-63 cell line and was undetectable in RNA from U(2)OS, SAOS-2 osteosarcoma cell lines and by RNA extracted from bone biopsies of osteosarcoma patients. The absence of biglycan message observed in osteosarcoma samples provides evidence for the alterations in the extra cellular matrix which result with non-mineralized osteoid produced by the osteosarcoma cells.  相似文献   

4.
5.
目的:通过对比和检测人正常成骨细胞系hFOB1.19以及骨肉瘤细胞系MG63中NOK以及EMT标志性分子E-cadherin、Vimitin的mRNA和蛋白表达量,并观察NOK对骨肉瘤细胞系MG63中EMT标志性分子E-cadherin及Vimitin的mRNA和蛋白表达量的影响,探讨NOK在骨肉瘤细胞系MG63 EMT过程中的作用。方法:qRT-PCR、Western blot法检测人正常成骨细胞系hFOB1.19以及骨肉瘤细胞系MG63中NOK、E-cadherin、Vimitin的mRNA和蛋白表达量;构建慢病毒并干扰骨肉瘤细胞系MG63中NOK表达,qRT-PCR、Western blot法检测干扰NOK前后EMT标志性分子E-cadherin及Vimitin的mRNA和蛋白表达。结果:相比于人正常成骨细胞系,NOK、Vimitin的mRNA和蛋白在骨肉瘤细胞系MG63中高表达,E-cadherin的mRNA和蛋白在骨肉瘤细胞系MG63中低表达。慢病毒干扰骨肉瘤细胞中NOK表达后,E-cadherin的mRNA和蛋白表达升高,Vimitin的mRNA和蛋白表达降低。结论:NOK具有促进骨肉瘤细胞系MG63发生EMT过程。  相似文献   

6.
7.
BMP-2、-3、-6和-12在骨肉瘤细胞株中的表达   总被引:5,自引:0,他引:5  
目的研究骨形态发生蛋白(bone morphogenetic protein,BMP)-2、-3、-6和-12在骨肉瘤细胞株中的表达,为下一步研究BMPs在骨肉瘤发生发展中的作用奠定基础。方法利用免疫细胞化学法和Western blot法检测BMP-2、-3、-6和-12在人骨肉瘤细胞株MG63、U2OS和大鼠骨肉瘤细胞株UMR106中的内源性表达。结果在MG63、U2OS和UMR106细胞中,BMP-2、-3和-6均呈不同程度的阳性表达;而BMP-12在这3株骨肉瘤细胞中则均为阴性,并且两种检测方法所得结果完全一致。结论BMP-2、-3和-6在人骨肉瘤细胞株MG63、U2OS和大鼠骨肉瘤细胞株UMR106中均有内源性表达;而这3株骨肉瘤细胞中均未检出BMP-12的表达。  相似文献   

8.
Drug repurposing is a cost-effective means of targeting new therapies for cancer. We have examined the effects of the repurposed drugs, bezafibrate, medroxyprogesterone acetate and valproic acid on human osteosarcoma cells, i.e., SAOS2 and MG63 compared with their normal cell counterparts, i.e. mesenchymal stem/stromal cells (MSCs). Cell growth, viability and migration were measured by biochemical assay and live cell imaging, whilst levels of lipid-synthesising enzymes were measured by immunoblotting cell extracts. These drug treatments inhibited the growth and survival of SAOS2 and MG63 cells most effectively when used in combination (termed V-BAP). In contrast, V-BAP treated MSCs remained viable with only moderately reduced cell proliferation. V-BAP treatment also inhibited migratory cell phenotypes. MG63 and SAOS2 cells expressed much greater levels of fatty acid synthase and stearoyl CoA desaturase 1 than MSCs, but these elevated enzyme levels significantly decreased in the V-BAP treated osteosarcoma cells prior to cell death. Hence, we have identified a repurposed drug combination that selectively inhibits the growth and survival of human osteosarcoma cells in association with altered lipid metabolism without adversely affecting their non-transformed cell counterparts.  相似文献   

9.
Osteosarcoma is usually associated with a disturbed bone metabolism. The aim of this work was to characterize the reciprocal interactions between MG63 osteosarcoma cells and osteoclasts, in a co-culture system. Co-cultures were characterized throughout 21 days for the osteoclastogenic response and the expression of osteoblastic markers. Monocultures of MG63 cells and peripheral blood mononuclear cell (PBMC) and co-cultures of PBMC + human bone marrow cells (hBMC) were also performed. Compared to PBMC cultures, co-cultures yielded significantly increased gene expression of osteoclast-related markers, tartarate-acid resistant phosphatase (TRAP) activity, TRAP-positive multinucleated cells, cells with actin rings and vitronectin receptors (VNR) and calcitonin receptors (CTR) and calcium phosphate resorbing ability. Results showed that the development of functional osteoclasts required a very low number of MG63 cells, suggesting a high osteoclastogenic-triggering capacity of this cell line. Subjacent mechanisms involved the pathways MEK and NF-kB, although with a lower relevance than that observed on PBMC monocultures or co-cultures of hBMC + PBMC; PGE2 production also had a contribution. Compared to MG63 cell monocultures, the co-culture expressed lower levels of COL1 and ALP, and higher levels of BMP-2, suggesting that PBMC also modulated the osteoblastic behavior. While M-CSF appeared to be involved in the osteoclastogenic response on the MG63 + PBMC co-cultures, RANKL does not seem to be a key player in the process. On the other hand, sphingosine-1-phosphate production might contribute to the modulation of the osteoblastic behavior. Results suggest that the reciprocal modulation between osteosarcoma and osteoclastic cells might contribute to the disturbed bone metabolism associated with bone tumors.  相似文献   

10.
Cellular differentiation is controlled by a variety of factors including gene methylation, which represses particular genes as cell fate is determined. The incorporation of 5-azacytidine (5azaC) into DNA in vitro prevents methylation and thus can alter cellular differentiation pathways. Human bone marrow fibroblasts and MG63 cells treated with 5azaC were used as models of osteogenic progenitors and of a more mature osteoblast phenotype, respectively. The capacity for differentiation of these cells following treatment with glucocorticoids was investigated. 5azaC treatment led to significant expression of the osteoblastic marker alkaline phosphatase in MG63 osteosarcoma cells, which was further augmented by glucocorticoids; however, in human marrow fibroblasts alkaline phosphatase activity was only observed in glucocorticoid-treated cultures. MG63 cells represent a phenotype late in the osteogenic lineage in which demethylation is sufficient to induce alkaline phosphatase activity. Marrow fibroblasts are at an earlier stage of differentiation and require stimulation with glucocorticoids. In contrast, the expression of osteocalcin, an osteoblastic marker, was unaffected by 5azaC treatment, suggesting that regulation of expression of the osteocalcin gene does not involve methylation. These models provide novel approaches to the study of the control of differentiation in the marrow fibroblastic system.  相似文献   

11.
2-Methoxyestradiol (2-ME), a naturally occurring mammalian metabolite of 17beta-Estradiol (E2), induces cell death in osteosarcoma cells. To further understand the molecular mechanisms of action, we have investigated cell cycle progression in 2-ME-treated human osteosarcoma (MG63, SaOS-2 and LM7 [corrected]) cells. At 5 microM, 2-ME induced growth arrest by inducing a block in cell cycle; 2-ME-treatment resulted in 2-fold increases in G1 phase cells and a decrease in S phase cells in MG63 and SaOS-2 osteosarcoma cell lines, compared to the appropriate vehicle controls. 2-ME-treatment induced a threefold increase in the G2 phase in LM7 [corrected] osteosarcoma cells. The results demonstrated steroid specificity, as the tumorigenic metabolite, 16alpha-hydroxyestradiol (16-OHE), did not have any effect on cell cycle progression in osteosarcoma cells. The cell cycle arrest coincided with an increase in expression of the cell cycle markers p21, p27 and p53 proteins in 2-ME-treated osteosarcoma cells. Also, MG63 cells, transiently transfected with cDNA for a 'loss of function mutant' RNA-dependent protein kinase (PKR) protein, were resistant to 2-ME-induced cell cycle arrest. These results suggest that 2-ME works in concert with factors regulating cell cycle progression, and cell cycle arrest precedes cell death in 2-ME-treated osteosarcoma cells.  相似文献   

12.
In vitro 3D tissue‐engineered (TE) structures have been shown to better represent in vivo tissue morphology and biochemical pathways than monolayer culture, and are less ethically questionable than animal models. However, to create systems with even greater relevance, multiple integrated tissue systems should be recreated in vitro. In the present study, the effects and conditions most suitable for the co‐culture of TE skeletal muscle and bone are investigated. High‐glucose Dulbecco's modified Eagle medium (HG‐DMEM) supplemented with 20% fetal bovine serum followed by HG‐DMEM with 2% horse serum is found to enable proliferation of both C2C12 muscle precursor cells and TE85 human osteosarcoma cells, fusion of C2C12s into myotubes, as well as an upregulation of RUNX2/CBFa1 in TE85s. Myotube formation is also evident within indirect contact monolayer cultures. Finally, in 3D co‐cultures, TE85 collagen/hydroxyapatite constructs have significantly greater expression of RUNX2/CBFa1 and osteocalcin/BGLAP in the presence of collagen‐based C2C12 skeletal muscle constructs; however, fusion within these constructs appears reduced. This work demonstrates the first report of the simultaneous co‐culture and differentiation of 3D TE skeletal muscle and bone, and represents a significant step toward a full in vitro 3D musculoskeletal junction model.  相似文献   

13.
14.
15.
Osteosarcoma is the most common primary bone tumour in children and adolescents. Accumulating evidence has shown that microRNAs (miRNAs) participate in the development of almost all types of cancer. Here, we investigated the role of miR‐224 in the development and progression of osteosarcoma. We demonstrated that miR‐224 was down‐regulated in osteosarcoma cell lines and tissues. Lower miR‐224 levels were correlated with shorter survivalin osteosarcoma patients. Furthermore, overexpression of miR‐224 suppressed osteosarcoma cell proliferation, migration and invasion and contributed to the increased sensitivity of MG‐63 cells to cisplatin. We identified Rac1 as a direct target gene of miR‐224 in osteosarcoma. Rac1 expression was up‐regulated in the osteosarcoma cell lines and tissues, and there was an inverse correlation between Rac1 and miR‐224 expression in osteosarcoma tissues. Furthermore, rescuing Rac1 expression decreased the sensitivity of miR‐224‐overexpressing MG‐63 cells to cisplatin. We also demonstrated that ectopic expression of Rac1 promoted the proliferation, migration and invasion of miR‐224‐overexpressing MG‐63 cells. These data suggest that miR‐224 plays a tumour suppressor role in the development of osteosarcoma and is related to the sensitivity of osteosarcoma to cisplatin.  相似文献   

16.
Phosphatidylinositol (PI)-linked forms of surface molecules have been hypothesized to mediate the initial stages of cell adhesion or signal transduction. We report evidence for the occurrence of a functional PI-linked subset of cell surface fibronectin receptors (FNR). Treatment of human MG63 osteosarcoma cells or primary chicken embryo fibroblasts (CEF) with PI-specific phospholipase C (PI-PLC) reduced cell surface FNR expression by 30% as detected by immunofluorescence. PI-PLC treatment of cell membranes purified from [35S]methionine-labeled CEF or MG63 cells led to a similar loss of membrane-associated immunoprecipitable FNR from the pelleted membranes, while such treatment led to the appearance of FNR in the supernatant of treated MG63 membranes. Biosynthetic labeling of CEF FNR with [3H]palmitate and [3H]ethanolamine demonstrated the acylation and putative PI linkage of avian FNR subunits. PI-PLC treatment of CEF and MG63 cells also reduced fibronectin-specific adhesion in a short-term in vitro assay, suggesting that the avian and human FNR occur in PI-linked isoforms which appear to contribute to cell adhesion to fibronectin.  相似文献   

17.
Insulin-like growth factor-I (IGF-I) was found to promote proliferation, cell survival, and inhibition of apoptosis. But in some instances, IGF-I was found to mildly induce apoptosis, i. e. Fas-mediated apoptosis in human MG63 osteosarcoma cells. In the present study, we intended to further investigate IGF-I dependent pathways leading either to proliferation and cell survival or to cell death. MG63 osteosarcoma cells were treated with serum free medium alone or in combination with IGF-I, a neutralizing antibody against the human IGF-I receptor (alphaIR-3) or non-immune control IgG (1) for two to six days. We investigated cell survival (cell count), proliferation (CD71-FACS), apoptosis (Annexin-V-FACS, Caspase-3 activity, PCD) and anti-apoptosis (112-Ser Bad phosphorylation), and regulation of IGF-I receptor surface expression (IGF-I receptor-FACS). We found that IGF-I treatment (48 h) stimulated cell growth and proliferation, but also mildly induced apoptosis. IGF-I activated specific apoptotic pathways (Caspase-3 activation, Annexin-V binding and DNA degradation), as well as anti-apoptotic signals (Bad phosphorylation at serine 112). alphaIR-3 blocked cell proliferation, strongly induced apoptosis, and inhibited Bad-phosphorylation. Thus, IGF-I treatment overall resulted in increased tumour cell mass, despite a detectable stimulation of apoptosis; in other words proliferation exceeded cell death. If IGF-I was first added on day 0, 2, or 4 of serum free culture, we found decreasing IGF-I specific effects on proliferation and apoptosis. In parallel, we found a down-regulation of IGF-I receptors (FACS) by serum withdrawal, which was partly reversed if IGF-I was added. Therefore receptor number might have an impact on IGF-I function in MG63 cells. In conclusion, co-activation of apoptosis and proliferation by IGF-I might result in higher cell turnover in MG63 osteosarcoma cells. Furthermore, in sarcomas or carcinomas showing clinical association to IGF-I levels and malignancy, IGF-I dependent apoptosis and proliferation could be a significant mechanism of malignant tumour growth.  相似文献   

18.
19.
20.
Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre‐osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up‐regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle‐regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre‐established levels in a given cell type triggers one or more anti‐proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. J. Cell. Physiol. 228: 714–723, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号