首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stability and equilibrium unfolding of a model three-helix bundle protein, alpha(3)-1, by guanidine hydrochloride (GdnHCl), hydrostatic pressure, and temperature have been investigated. The combined use of these denaturing agents allowed detection of two partially folded states of alpha(3)-1, as monitored by circular dichroism, intrinsic fluorescence emission, and fluorescence of the hydrophobic probe bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid). The overall free-energy change for complete unfolding of alpha(3)-1, determined from GdnHCl unfolding data, is +4.6 kcal/mol. The native state is stabilized by -1.4 kcal/mol relative to a partially folded pressure-denatured intermediate (I(1)). Cold denaturation at high pressure gives rise to a second partially (un)folded conformation (I(2)), suggesting a significant contribution of hydrophobic interactions to the stability of alpha(3)-1. The free energy of stabilization of the native-like state relative to I(2) is evaluated to be -2.5 kcal/mol. Bis-ANS binding to the pressure- and cold-denatured states indicates the existence of significant residual hydrophobic structure in the partially (un)folded states of alpha(3)-1. The demonstration of folding intermediates of alpha(3)-1 lends experimental support to a number of recent protein folding simulation studies of other three-helix bundle proteins that predicted the existence of such intermediates. The results are discussed in terms of the significance of de novo designed proteins for protein folding studies.  相似文献   

2.
Both monomeric and dimeric constructs of the B domain of protein A from Staphylococcus aureus have been characterized by NMR, CD and fluorescence spectroscopy. The monomeric form of the protein was synthesized using a novel method incorporating the use of a recombinant, folded, chimeric protein. A comparison of the recombinant monomeric form with the commercially available dimeric form indicates that, although the dimer retains the integrity of the three-helix bundle structure present in the monomer, there are interdomain contacts in the dimeric form. A single long-lived water molecule in the hydrophobic core of the three-helix bundle of monomeric protein A may represent an important stabilizing factor for the three-helix bundle topology.  相似文献   

3.
Previous work shows that the transiently populated, on-pathway intermediate in Im7 folding contains three of the four native alpha-helices docked around a core stabilised by native and non-native interactions. To determine the structure and dynamic properties of this species in more detail, we have used protein engineering to trap the intermediate at equilibrium and analysed the resulting proteins using NMR spectroscopy and small angle X-ray scattering. Four variants were created. In L53AI54A, two hydrophobic residues within helix III are truncated, preventing helix III from docking stably onto the developing hydrophobic core. In two other variants, the six residues encompassing the native helix III were replaced with three (H3G3) or six (H3G6) glycine residues. In the fourth variant, YY, two native tyrosine residues (Tyr55 and Tyr56) were re-introduced into H3G6 to examine their role in determining the properties of the intermediate ensemble. All four variants show variable peak intensities and broad peak widths, consistent with these proteins being conformationally dynamic. Chemical shift analyses demonstrated that L53AI54A and YY contain native-like secondary structure in helices I and IV, while helix II is partly formed and helix III is absent. Lack of NOEs and rapid NH exchange for L53AI54A, combined with detailed analysis of the backbone dynamics, indicated that the hydrophobic core of this variant is not uniquely structured, but fluctuates on the NMR timescale. The results demonstrate that though much of the native-like secondary structure of Im7 is present in the variants, their hydrophobic cores remain relatively fluid. The comparison of H3G3/H3G6 and L53AI54A/YY suggests that Tyr55 and/or Tyr56 interact with the three-helix core, leading other residues in this region of the protein to dock with the core as folding progresses. In this respect, the three-helix bundle acts as a template for formation of helix III and the creation of the native fold.  相似文献   

4.
Helix-helix interactions in the putative three-helix bundle formation of the gp41 transmembrane (TM) domain may contribute to the process of virus-cell membrane fusion in HIV-1 infection. In this study, molecular dynamics is used to analyze and compare the conformations of monomeric and trimeric forms of the TM domain in various solvent systems over the course of 4 to 23-ns simulations. The trimeric bundles of the TM domain were stable as helices and remained associated in a hydrated POPE lipid bilayer for the duration of the 23-ns simulation. Several stable inter-chain hydrogen bonds, mostly among the three deprotonated arginine residues located at the center of each of the three TM domains, formed in a right-handed bundle embedded in the lipid bilayer. No such bonds were observed when the bundle was left-handed or when the central arginine residue in each of the three TM helices was replaced with isoleucine (R_I mutant), suggesting that the central arginine residues may play an essential role in maintaining the integrity of the three-helix bundle. These observations suggest that formation of the three-helix bundle of the TM domain may play a role in the trimerization of gp41, thought to occur during the virus-cell membrane fusion process.  相似文献   

5.
Bode KA  Applequist J 《Biopolymers》1997,42(7):855-860
The dipole interaction model is used to investigate the effects of interactions between helices and supertwisting of helices by determining whether the predicted UV absorption and CD spectra for the three-helix bundle and coiled coil are significantly different from spectra for the single straight alpha-helix. Crystallographic data by Yan et al. for alpha-spectrin are used to construct a three-helix bundle of poly(L-alanine) modeling the protein. Backbone torsion angles represented by Fourier series are used to generate supertwisted helices and coiled coil models of poly(L-alanine) that have pitch, radius, and residue repeat similar to experimental crystallographic data on tropomyosin. Calculated CD spectra are compared with available experimental data. Theoretical spectra for the three-helix bundle and the supertwisted structures are quite similar to predictions for the straight alpha-helix of the same length with similar torsion angles, suggesting that CD is primarily dependent on the average backbone conformation and would not be a sensitive tool for distinguishing between single straight helices and closely packed or twisted alpha-helices.  相似文献   

6.
The crystal structure of the highly thermostable l-aspartate oxidase (LAO) from the hyperthermophilic archaeon Sulfolobus tokodaii was determined at a 2.09 A resolution. The factors contributing to the thermostability of the enzyme were analyzed by comparing its structure to that of Escherichia coli LAO. Like E. coli LAO, the S. tokodaii enzyme consists of three domains: an FAD-binding domain, an alpha+beta capping domain, and a C-terminal three-helix bundle. However, the situation of the linker between the FAD-binding domain and C-terminal three-helix bundle in S. tokodaii LAO is completely different from that in E. coli LAO, where the linker is situated near the FAD-binding domain and has virtually no interaction with the rest of the protein. In S. tokodaii LAO, this linker is situated near the C-terminal three-helix bundle and contains a beta-strand that runs parallel to the C-terminal strand. This results in the formation of an additional beta-sheet, which appears to reduce the flexibility of the C-terminal region. Furthermore, the displacement of the linker enables formation of a 5-residue ion-pair network between the FAD-binding and C-terminal domains, which strengthens the interdomain interactions. These features might be the main factors contributing to the high thermostability of S. tokodaii LAO.  相似文献   

7.
Shu JY  Tan C  DeGrado WF  Xu T 《Biomacromolecules》2008,9(8):2111-2117
We present a new design of peptide-polymer conjugates where a polymer chain is covalently linked to the side chain of a helix bundle-forming peptide. The effect of conjugated polymer chains on the peptide structure was examined using a de novo designed three-helix bundle and a photoactive four-helix bundle. Upon attachment of poly(ethylene glycol) to the exterior of the coiled-coil helix bundle, the peptide secondary structure was stabilized and the tertiary structure, that is, the coiled-coil helix bundle, was retained. When a heme-binding peptide as an example is used, the new peptide-polymer conjugate architecture also preserves the built-in functionalities within the interior of the helix bundle. It is expected that the conjugated polymer chains act to mediate the interactions between the helix bundle and its external environment. Thus, this new peptide-polymer conjugate design strategy may open new avenues to macroscopically assemble the helix bundles and may enable them to function in nonbiological environments.  相似文献   

8.
The immunogen FFL_001 of respiratory syncytial virus (RSV), a widely spread virus that infects the lungs and breathing passages, is a three-helix bundle protein of 115 amino acids long that consists of three helical arms H1, H2 and H3. Here, we attempted to perform molecular engineering of the immunogen, aiming to considerably reduce the protein scaffold of FFL_001 with only moderate activity loss. Structural analysis and molecular dynamics (MD) simulations revealed that two helices H2 and H3 of the FFL_001 three-helix bundle can directly interact with its cognate monoclonal antibody Motavizumab, while the remaining helix H1 plays a crucial role in stabilisation of the three-helix bundle conformation. Binding of the two split peptide segments separately representing FFL_001 two-helix bundle H2-H3 and Motavizumab-binding site to the antibody would incur considerable entropy penalty as compared to binding of the intact FFL_001, suggesting that peptide segments are highly flexible that exhibit a strong intrinsic disorder in solution. In this respect, a scheme was proposed to rationally redesign the immunogen protein scaffold by truncation and cyclisation of the three-helix bundle. The cyclisation was conducted on the spatially vicinal residue pairs in H2 and H3 helical arms by mutating the residue to cysteine and introducing a disulphide bond across them. Consequently, we obtained three cyclic peptides that were theoretically predicted to have strong binding potency towards Motavizumab. In order to substantiate the computational finding, binding affinity of the designed cyclic peptide and its linear counterpart was determined. Consistently, no binding can be found between the linear peptide and Motavizumab (Kd = n.d.), while a moderately high affinity was observed for cyclic peptide (Kd = 16.2 nM).  相似文献   

9.
Automated methodologies to design synthetic proteins from first principles use energy computations to estimate the ability of the sequences to adopt a targeted structure. This approach is still far from systematically producing native-like sequences, due, most likely, to inaccuracies when modeling the interactions between the protein and its aqueous environment. This is particularly challenging when engineering small protein domains (with less polar pair interactions than with the solvent). We have re-designed a three-helix bundle, domain B, using a fixed backbone and a four amino acid alphabet. We have enlarged the rotamer library with conformers that increase the weight of electrostatic interactions within the design process without altering the energy function used to compute the folding free energy. Our synthetic sequences show less than 15% similarity to any Swissprot sequence. We have characterized our sequences in different solvents using circular dichroism and nuclear magnetic resonance. The targeted structure achieved is dependent on the solvent used. This method can be readily extended to larger domains. Our method will be useful for the engineering of proteins that become active only in a given solvent and for designing proteins in the context of hydrophobic solvents, an important fraction of the situations in the cell.  相似文献   

10.
De novo sequence design of foldable proteins provides a way of investigating principles of protein architecture. We performed fully automated sequence design for a target structure having a three-helix bundle topology and synthesized the designed sequences. Our design principle is different from the conventional approach, in that instead of optimizing interactions within the target structure, we design the global shape of the protein folding funnel. This includes automated implementation of negative design by explicitly requiring higher free energy of the denatured state. The designed sequences do not have significant similarity to those of any natural proteins. The NMR and CD spectroscopic data indicated that one designed sequence has a well-defined three-dimensional structure as well as alpha-helical content consistent with the target.  相似文献   

11.
Nucleophosmin (NPM1) is a nucleocytoplasmic shuttling protein, mainly localized at nucleoli, that plays a key role in several cellular functions, including ribosome maturation and export, centrosome duplication, and response to stress stimuli. More than 50 mutations at the terminal exon of the NPM1 gene have been identified so far in acute myeloid leukemia; the mutated proteins are aberrantly and stably localized in the cytoplasm due to high destabilization of the NPM1 C-terminal domain and the appearance of a new nuclear export signal. We have shown previously that the 70-residue NPM1 C-terminal domain (NPM1-C70) is able to bind with high affinity a specific region at the c-MYC gene promoter characterized by parallel G-quadruplex structure. Here we present the solution structure of the NPM1-C70 domain and NMR analysis of its interaction with a c-MYC-derived G-quadruplex. These data were used to calculate an experimentally restrained molecular docking model for the complex. The NPM1-C70 terminal three-helix bundle binds the G-quadruplex DNA at the interface between helices H1 and H2 through electrostatic interactions with the G-quadruplex phosphate backbone. Furthermore, we show that the 17-residue lysine-rich sequence at the N terminus of the three-helix bundle is disordered and, although necessary, does not participate directly in the contact surface in the complex.  相似文献   

12.
The post-translational modification of proteins by the covalent attachment of carbohydrates to specific side chains, or glycosylation, is emerging as a crucial process in modulating the function of proteins. In particular, the dynamic processing of the oligosaccharide can correlate with a change in function. For example, a potent macrophage-activating factor, Gc-MAF, is obtained from serum vitamin D binding protein (VDBP) by stepwise processing of the oligosaccharide attached to Thr 420 to the core alpha-GalNAc moiety. In previous work we designed a miniprotein analog of Gc-MAF, MM1, by grafting the glycosylated loop of Gc-MAF on a stable scaffold. GalNAc-MM1 showed native-like activity on macrophages (Bogani 2006, J. Am. Chem. Soc. 128 7142-43). Here, we present data on the thermodynamic stability and conformational dynamics of the mono- and diglycosylated forms. We observed an unusual trend: each glycosylation event destabilized the protein by about 1 kcal/mol. This effect is matched by an increase in the mobility of the glycosylated forms, as evaluated by molecular dynamics simulations. An analysis of the solvent-accessible surface area shows that glycosylation causes the three-helix bundle to adopt conformations in which the hydrophobic residues are more solvent exposed. The number of hydrophobic contacts is also affected. These two factors, which are ultimately explained with a change in occupancy for conformers of specific side chains, may contribute to the observed destabilization.  相似文献   

13.
The design of large macromolecular assemblies is an endeavor with implications for protein engineering as well as nanotechnology. A hierarchic approach was used to design an antiparallel hexameric, tubular assembly of helices. In previous studies, a domain-swapped, dimeric three-helix bundle was designed from first principles. In the crystal lattice, three dimers associate around a 3-fold rotational axis to form a hexameric assembly. Although this hexameric assembly was not observed in solution, it was possible to stabilize its formation by changing three polar residues per monomer to hydrophobic (two Phe and one Trp) residues. Molecular models based on the crystallographic coordinates of DSD (PDB accession code 1G6U) show that these side-chains pack in the central cavity (the "supercore") of the hexameric bundle. Analytical ultracentrifugation, fluorescence spectroscopy, CD spectroscopy, and guanidine-HCl denaturation were used to determine the assembly of the hexamer. To probe the requirements for stabilizing the hexamer, we systematically varied the polarity and steric bulk of one of the Phe residues in the supercore of the hexamer. Depending on the nature of this side-chain, it is possible to modulate the stability of the hexamer in a predictable manner. This family of hexameric proteins may provide a useful framework for the construction of proteins that change their oligomeric states in response to binding of small molecules.  相似文献   

14.
The oligomerization and aggregation of the amyloid-β (Aβ) peptide, a cleavage product of the amyloid precursor protein predominantly 40 or 42 amino acids in length, has been implicated in the pathogenesis of Alzheimer's disease. The identification of Aβ-binding agents, e.g., antibodies or peptides, constitutes a promising therapeutic approach. However, the amount of structural and biophysical data on the underlying Aβ interactions is currently very limited. We have earlier determined the structure of Aβ(1-40) in complex with the affibody protein ZAβ3, a selected binding protein based on a three-helix bundle scaffold (Z domain). ZAβ3 is a dimer of affibody subunits linked via a disulfide bridge involving a selected cysteine mutation at position 28. ZAβ3 binds to the central and C-terminal part of Aβ (residues 17-36), which adopts a β-hairpin conformation in the complex. Here we present a detailed biophysical analysis of the ZAβ3:Aβ(1-40) interaction, employing NMR, circular dichroism spectroscopy, 8-anilino-1-naphthalenesulfonic acid and tyrosine fluorescence, size-exclusion chromatography, thermal denaturation profiles and isothermal titration calorimetry. We conclude that (i) free ZAβ3 is characterized by conformational exchange and the loss of helix 1 of the three-helix bundle scaffold; (ii) a high-energy barrier is associated with the conversion of an initial ZAβ3:Aβ(1-40) recognition complex into the native complex structure, entailing slow binding kinetics; (iii) both Aβ and ZAβ3 fold upon binding, which, e.g., becomes manifest in the binding thermodynamics that feature a large negative change in heat capacity; (iv) the C28-disulfide does not merely afford dimerization, but its impact on the binding interfaces of the affibody subunits and Aβ is a prerequisite for tight binding. The extensive folding coupled to binding observed here likely constitutes an obligate feature of biomolecular interactions involving the central and C-terminal part of Aβ. Options for improvement of Z binding proteins are discussed.  相似文献   

15.
Feng H  Takei J  Lipsitz R  Tjandra N  Bai Y 《Biochemistry》2003,42(43):12461-12465
Structures of intermediates and transition states in protein folding are usually characterized by amide hydrogen exchange and protein engineering methods and interpreted on the basis of the assumption that they have native-like conformations. We were able to stabilize and determine the high-resolution structure of a partially unfolded intermediate that exists after the rate-limiting step of a four-helix bundle protein, Rd-apocyt b(562), by multidimensional NMR methods. The intermediate has partial native-like secondary structure and backbone topology, consistent with our earlier native state hydrogen exchange results. However, non-native hydrophobic interactions exist throughout the structure. These and other results in the literature suggest that non-native hydrophobic interactions may occur generally in partially folded states. This can alter the interpretation of mutational protein engineering results in terms of native-like side chain interactions. In addition, since the intermediate exists after the rate-limiting step and Rd-apocyt b(562) folds very rapidly (k(f) approximately 10(4) s(-1)), these results suggest that non-native hydrophobic interactions, in the absence of topological misfolding, are repaired too rapidly to slow folding and cause the accumulation of folding intermediates. More generally, these results illustrate an approach for determining the high-resolution structure of folding intermediates.  相似文献   

16.
Vogel R  Siebert F 《Biochemistry》2002,41(11):3536-3545
We studied the stability and pH-induced denaturation of rhodopsin and its photoproducts as a model for alpha-helical membrane proteins. The increased stability of the dark state of rhodopsin as compared to its photoproduct states allows the initiation of unfolding of the protein by light-dependent isomerization of the chromophore. We could therefore characterize the transition from the native to either acid or alkaline denatured states by light-induced Fourier transform infrared difference spectroscopy, UV-visible spectroscopy, and intrinsic tryptophan fluorescence spectroscopy. The results indicate a loss of important tertiary interactions within the protein and between the protein and the retinal chromophore in the denatured state, despite that the secondary structure of the protein is almost fully retained during the transition. We therefore propose that in this denatured state the protein adopts the conformation of a loose bundle of preserved, but only weakly interacting, transmembrane helices with a largely des-oriented and partly solvent-exposed chromophore. We further characterized the influence of salts on the stability of the rhodopsin helix bundle, which was found to follow the Hofmeister series. We found that the effect of sodium chloride may be stabilizing or destabilizing, depending on the intrinsic stability of the examined protein conformation and on salt concentration. In particular, sodium chloride is shown to counteract the formation of the denatured loose bundle state presumably by increasing the lateral pressure on the helix bundle, thereby stabilizing native-like tertiary contacts within the protein.  相似文献   

17.
Binary patterning of polar and nonpolar amino acids has been used as the key design feature for constructing large combinatorial libraries of de novo proteins. Each position in a binary patterned sequence is designed explicitly to be either polar or nonpolar; however, the precise identities of these amino acids are varied extensively. The combinatorial underpinnings of the "binary code" strategy preclude explicit design of particular side chains at specified positions. Therefore, packing interactions cannot be specified a priori. To assess whether the binary code strategy can nonetheless produce well-folded de novo proteins, we constructed a second-generation library based upon a new structural scaffold designed to fold into 102-residue four-helix bundles. Characterization of five proteins chosen arbitrarily from this new library revealed that (1) all are alpha-helical and quite stable; (2) four of the five contain an abundance of tertiary interactions indicative of well-ordered structures; and (3) one protein forms a well-folded structure with native-like features. The proteins from this new 102-residue library are substantially more stable and dramatically more native-like than those from an earlier binary patterned library of 74-residue sequences. These findings demonstrate that chain length is a crucial determinant of structural order in libraries of de novo four-helix bundles. Moreover, these results show that the binary code strategy--if applied to an appropriately designed structural scaffold--can generate large collections of stably folded and/or native-like proteins.  相似文献   

18.
Because of their limited size and complexity, de novo designed proteins are particularly useful for the detailed investigation of folding thermodynamics and mechanisms. Here, we describe how subtle changes in the hydrophobic core of a model three-helix bundle protein (GM-0) alter its folding energetics. To explore the folding tolerance of GM-0 toward amino acid sequence variability, two mutant proteins (GM-1 and GM-2) were generated. In the mutants, cavities were created in the hydrophobic core of the protein by either singly (GM-1; L35A variant) or doubly (GM-2; L35A/I39A variant) replacing large hydrophobic side chains by smaller Ala residues. The folding of GM-0 is characterized by two partially folded intermediate states exhibiting characteristics of molten globules, as evidenced by pressure-unfolding and pressure-assisted cold denaturation experiments. In contrast, the folding energetics of both mutants, GM-1 and GM-2, exhibit only one folding intermediate. Our results support the view that simple but biologically important folding motifs such as the three-helix bundle can reveal complex folding plasticity, and they point to the role of hydrophobic packing as a determinant of the overall stability and folding thermodynamic of the helix bundle.  相似文献   

19.
DnaT is a primosomal protein that is required for the stalled replication fork restart in Escherichia coli. As an adapter, DnaT mediates the PriA-PriB-ssDNA ternary complex and the DnaB/C complex. However, the fundamental function of DnaT during PriA-dependent primosome assembly is still a black box. Here, we report the 2.83 Å DnaT84–153-dT10 ssDNA complex structure, which reveals a novel three-helix bundle single-stranded DNA binding mode. Based on binding assays and negative-staining electron microscopy results, we found that DnaT can bind to phiX 174 ssDNA to form nucleoprotein filaments for the first time, which indicates that DnaT might function as a scaffold protein during the PriA-dependent primosome assembly. In combination with biochemical analysis, we propose a cooperative mechanism for the binding of DnaT to ssDNA and a possible model for the assembly of PriA-PriB-ssDNA-DnaT complex that sheds light on the function of DnaT during the primosome assembly and stalled replication fork restart. This report presents the first structure of the DnaT C-terminal complex with ssDNA and a novel model that explains the interactions between the three-helix bundle and ssDNA.  相似文献   

20.
The molecular motor protein myosin VI moves toward the minus-end of actin filaments with a step size of 30–36 nm. Such large step size either drastically limits the degree of complex formation between dimer subunits to leave enough length for the lever arms, or requires an extension of the lever arms' crystallographically observed structure. Recent experimental work proposed that myosin VI dimerization triggers the unfolding of the protein's proximal tail domain which could drive the needed lever-arm extension. Here, we demonstrate through steered molecular dynamics simulation the feasibility of sufficient extension arising from turning a three-helix bundle into a long α-helix. A key role is played by the known calmodulin binding that facilitates the extension by altering the strain path in myosin VI. Sequence analysis of the proximal tail domain suggests that further calmodulin binding sites open up when the domain's three-helix bundle is unfolded and that subsequent calmodulin binding stabilizes the extended lever arms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号