首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
7-Ketocholesterol is a major dietary oxysterol and the predominant non-enzymically formed oxysterol in human atherosclerotic plaque. We tested the hypothesis that 7-ketocholesterol is preferentially retained by tissues relative to cholesterol in vivo. To ensure rapid tissue uptake, acetylated low density lipoprotein, labeled with esters of [(14)C]-7-ketocholesterol and [(3)H]cholesterol, was injected into rats via a jugular catheter. At timed intervals (2 min to 24 h) rats (n = 48 total) were exsanguinated and tissues were dissected and assayed for radioactivity. In two experiments the majority of both radiolabels appeared in the liver after 2 min. In all tissues, (14)C appeared transiently and did not accumulate. Rather, it was metabolized in the liver and excreted into the intestine mainly as aqueous-soluble metabolites (presumably bile acids). By 9 h, (14)C in the liver had decreased to 10% of the injected dose while 36% was present in the intestine. In contrast, at 9 h 38% of (3)H was evident in the liver while only 5% was found in the intestine. Unlike [(3)H]cholesterol, little (14)C was found to re-enter the circulation, indicating that enterohepatic recycling of 7-ketocholesterol was negligible.This is the first report of the distribution of an oxysterol relative to cholesterol, administered simultaneously, in a whole animal model. The finding that [(14)C]-7-ketocholesterol is rapidly metabolized and excreted by the liver suggests that diet may not be a major source of oxysterols in atherosclerotic plaque, and that perhaps dietary oxysterols make little or no contribution to atherogenesis.  相似文献   

2.
It has recently been shown that extrahepatic cells can eliminate intracellular cholesterol by enzymatic conversion into 27-hydroxy-cholesterol and 3β-hydroxy-5-cholestenoic acid. Using immunohistochemical methods, we studied the presence of the enzyme responsible for these conversions, sterol 27-hydroxylase, in human carotid atherosclerotic plaques. All plaques examined were found to contain sterol 27-hydroxylase immuno-reactive cells. While some endothelial cells stained for sterol 27-hydroxylase, the majority of the immunoreactive cells co-localized with macrophages. Accumulation of sterol 27-hydroxylase-positive cells were often observed in macrophage-rich core regions of complicated lesions. High concentrations of 27-hydroxycholesterol were found in plaques, while the concentration in non-atherosclerotic human vessels was lower by two orders of magnitude. The rabbit, which is particularly sensitive to dietary cholesterol and easily develops fatty streaks, had low plasma levels of 27-hydroxycholesterol, 3 ng/ml compared to 150 ng/ml in humans. The concentration of 27-hydroxycholesterol in the atherosclerotic rabbit vessels was also lower compared to human atherosclerotic plaques. The results are consistent with our hypothesis that sterol 27-hydroxylase may be utilized by human macrophages as a defence towards a high cholesterol load. This mechanism may be less important in some other species.  相似文献   

3.
In man, hepatic mitochondrial sterol 27-hydroxylase and microsomal cholesterol 7-hydroxylase initiate distinct pathways of bile acid biosynthesis from cholesterol, the “acidic” and “neutral” pathways, respectively. A similar acidic pathway in the rat has been hypothesized, but its quantitative importance and ability to be regulated at the level of sterol 27-hydroxylase are uncertain. In this study, we explored the molecular regulation of sterol 27-hydroxylase and the acidic pathway of bile acid biosynthesis in primary cultures of adult rat hepatocytes. mRNA and protein turnover rates were approximately 10-fold slower for sterol 27-hydroxylase than for cholesterol 7-hydroxylase. Sterol 27-hydroxylase mRNA was not spontaneously expressed in culture. The sole requirement for preserving sterol 27-hydroxylase mRNA at the level of freshly isolated hepatocytes (0 h) after 72 h was the addition of dexamethasone (0.1 μM; > 7-fold induction). Sterol 27-hydroxylase mRNA, mass and specific activity were not affected by thyroxine (1.0 μM), dibutyryl-cAMP (50 μM), nor squalestatin 1 (150 nM-1.0 μM), an inhibitor of cholesterol biosynthesis. Taurocholate (50 μM), however, repressed sterol 27-hydroxylase mRNA levels by 55%. Sterol 27-hydroxylase specific activity in isolated mitochondria was increased > 10-fold by the addition of 2-hydroxypropyl-β-cyclodextrin. Under culture conditions designed to maximally repress cholesterol 7-hydroxylase and bile acid synthesis from the neutral pathway but maintain sterol 27-hydroxylase mRNA and activity near 0 h levels, bile acid synthesis from [14C]cholesterol remained relatively high and consisted of β-muricholate, the product of chenodeoxycholate in the rat. We conclude that rat liver harbors a quantitatively important alternative pathway of bile acid biosynthesis and that its initiating enzyme, sterol 27-hydroxylase, may be slowly regulated by glucocorticoids and bile acids.  相似文献   

4.
Cholesterol- and cholesteryl ester-rich macrophage foam cells, characteristic of atherosclerotic lesions, are often generated in vitro using oxidized low density lipoprotein (OxLDL). However, relatively little is known of the nature and extent of sterol deposition in these cells or of its relationship to the foam cells formed in atherosclerotic lesions. The purpose of this study was to examine the content and cellular processing of sterols in OxLDL-loaded macrophages, and to compare this with macrophages loaded with acetylated LDL (AcLDL; cholesteryl ester-loaded cells containing no oxidized lipids) or 7-ketocholesterol-enriched acetylated LDL (7KCAcLDL; cholesteryl ester-loaded cells selectively supplemented with 7-ketocholesterol (7KC), the major oxysterol present in OxLDL). Both cholesterol and 7KC and their esters were measured in macrophages after uptake of these modified lipoproteins. Oxysterols comprised up to 50% of total sterol content of OxLDL-loaded cells. Unesterified 7KC and cholesterol partitioned into cell membranes, with no evidence of retention of either free sterol within lysosomes. The cells also contained cytosolic, ACAT-derived, cholesteryl and 7-ketocholesteryl esters. The proportion of free cholesterol and 7KC esterified by ACAT was 10-fold less in OxLDL-loaded cells than in AcLDL or 7KCAcLDL-loaded cells. This poor esterification rate in OxLDL-loaded cells was partly caused by fatty acid limitation. OxLDL-loaded macrophages also contained large (approximately 40-50% total cell sterol content) pools of oxidized esters, containing cholesterol or 7KC esterified to oxidized fatty acids. These were insensitive to ACAT inhibition, very stable and located in lysosomes, indicating resistance to lysosomal esterases. Macrophages loaded with OxLDL do not accumulate free sterols in their lysosomal compartment, but do accumulate lysosomal deposits of OxLDL-derived cholesterol and 7-ketocholesterol esterified to oxidized fatty acids. The presence of similar deposits in lesion foam cells would represent a pool of sterols that is particularly resistant to removal.  相似文献   

5.
Sterol 27-hydroxylase has been suggested to be involved in an alternative pathway for the elimination of cholesterol from macrophages and early atherosclerotic lesions. We have previously shown that human lung macrophages as well as monocyte-derived macrophages have a relatively high activity of sterol 27-hydroxylase (CYP27). This enzyme converts intracellular cholesterol into 27-hydroxycholesterol and cholestenoic acid that flux from cultured cells into the medium. It is shown here that human monocytes have very low CYP27 activity and CYP27 mRNA levels. During differentiation into macrophages, both CYP27 activity and CYP27 mRNA levels increase markedly after 4 days of culture in serum-free medium. Addition of macrophage-colony stimulating factor had no significant effect on the induction and addition of fetal calf serum had an inhibitory effect. Cholesterol synthesis was found to be a critical factor for the production of 27-oxygenated products by the macrophages cultured in serum-free medium. The increased capacity of the differentiated cells to eliminate intracellular cholesterol is of interest and supports the contention that CYP27 is an antiatherogenic factor.  相似文献   

6.
Cerebrotendinous xanthomatosis [CTX] is a rare disease characterized by the accumulation of cholesterol and cholestanol in brain and tendons caused by a mutation in the sterol 27-hydroxylase gene [CYP27A1] involved in bile acid synthesis. Disruption of this gene in mice does not give rise to xanthomas. The gene defect leads to reduced bile acid synthesis with a compensatory increase in the activity of the rate-limiting enzyme in bile acid synthesis, cholesterol 7α-hydroxylase. This leads to a marked accumulation of 7α-hydroxylated bile acid precursors, in particular 7α-hydroxy-4-cholesten-3-one. The latter oxysterol passes the blood-brain barrier and is an efficient precursor to cholestanol. The activity of cholesterol 7α-hydroxylase is normalized by treatment with bile acids. Such treatment reduces the xanthomas in CTX patients in parallel with decreased cholestanol levels. The relationship between the accumulation of cholestanol and the development of cholesterol-rich xanthomas has however not been clarified and a suitable animal model is still lacking.  相似文献   

7.
The Smith-Lemli-Opitz syndrome (SLOS) is a congenital birth defect syndrome caused by a deficiency of 3beta-hydroxysterol Delta(7)-reductase, the final enzyme in the cholesterol biosynthetic pathway. The patients have reduced plasma and tissue cholesterol concentrations with the accumulation of 7-dehydrocholesterol and 8-dehydrocholesterol. Bile acid synthesis is reduced and unnatural cholenoic and cholestenoic acids have been identified in some SLOS patients. To explore the mechanism of the abnormal bile acid production, the activities of key enzymes in classic and alternative bile acid biosynthetic pathways (microsomal cholesterol 7alpha-hydroxylase and mitochondrial sterol 27-hydroxylase) were measured in liver biopsy specimens from two mildly affected SLOS patients. The effects of 7- and 8-dehydrocholesterols on these two enzyme activities were studied by using liver from SLOS model rats that were treated with the Delta(7)-reductase inhibitor (BM15.766) for 4 months and were comparable with more severe SLOS phenotype in plasma and hepatic sterol compositions. In the SLOS patients, cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase were not defective. In BM15.766-treated rats, both enzyme activities were lower than those in control rats and they were competitively inhibited by 7- and 8-dehydrocholesterols. Rat microsomal cholesterol 7alpha-hydroxylase did not transform 7-dehydrocholesterol or 8-dehydrocholesterol into 7alpha-hydroxylated sterols. In contrast, rat mitochondrial sterol 27-hydroxylase catalyzed 27-hydroxylation of 7- and 8-dehydrocholesterols, which were partially converted to 3beta-hydroxycholestadienoic acids. Addition of microsomes to the mitochondrial 27-hydroxylase assay mixture reduced 27-hydroxydehydrocholesterol concentrations, which suggested that 27-hydroxydehydrocholesterols were further metabolized by microsomal enzymes. These results suggest that reduced normal bile acid production is characteristic of severe SLOS phenotype and is caused not only by depletion of hepatic cholesterol but also by competitive inhibition of cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase activities by accumulated 7- and 8-dehydrocholesterols. Unnatural bile acids are synthesized mainly by the alternative pathway via mitochondrial sterol 27-hydroxylase in SLOS.  相似文献   

8.
In atherosclerotic lesions, macrophages store lipid in cytoplasmic inclusions and lysosomes. Regression studies show that lysosomal lipid is not as easily cleared as cytoplasmic inclusion lipid. Macrophages enriched with mildly oxidized low density lipoprotein (oxLDL) accumulate cholesteryl ester (CE) and free cholesterol (FC) in lysosomes. We examined whether lysosomal stores of cholesterol from oxLDL are cleared from THP-1 and mouse macrophages. As in previous studies, oxLDL-enriched THP-1 macrophages accumulated substantial lysosomal cholesterol. Surprisingly, less than 12% of oxLDL-derived lysosomal CE was cleared to efficient FC acceptors (e.g., cyclodextrins, apolipoprotein/phosphatidylcholine vesicles, and fetal bovine serum). Filipin staining showed that lysosomes of oxLDL-treated THP-1 cells contained FC, and despite removal of most of the cell FC (70--80%) by incubation with cyclodextrins, filipin staining of FC in lysosomes did not diminish. Also, when THP-1 macrophages were incubated with [(3)H]CE oxLDL, 73--76% of the [(3)H]CE was retained in a lysosomal hydrolysis resistant pool. In contrast, greater than 90% of acetylated low density lipoprotein (acLDL) [(3)H]CE was hydrolyzed. Furthermore, [(3)H]FC liberated from oxLDL [(3)H]CE was released at a slower rate to cyclodextrins than was [(3)H]FC from acLDL [(3)H]CE. In contrast, only 27% of oxLDL [(3)H]CE was resistant to hydrolysis in mouse macrophages, and the [(3)H]FC generated from oxLDL and acLDL [(3)H]CE was released to cyclodextrins at similar rates. We conclude that lack of hydrolysis and efflux of oxLDL cholesterol is not exclusively inherent in oxLDL, but also requires specific cell factors present in one cell type but not the other.--Yancey, P. G., and W. G. Jerome. Lysosomal cholesterol derived from mildly oxidized low density lipoprotein is resistant to efflux. J. Lipid Res. 2001. 42: 317--327.  相似文献   

9.
Oxysterols, 27-carbon atoms cholesterol oxidation products, are consistently detectable in minimally oxidized low density lipoproteins (oxLDLs) and accumulate in the core of fibrotic plaques. Several oxysterols of pathophysiological interest have been shown to possess many and diverse biochemical activities. In particular, 7-ketocholesterol (7K), a major cholesterol oxide both in oxLDLs and in atherosclerotic lesions, is able to lead vascular cells to apoptosis. Indeed, when 7K is added to cells of the macrophage lineage, in a concentration range actually detectable in hypercholesterolemic patients, a marked apoptotic effect was observed. However, when identical concentrations of 7K are given to the same cells in a mixture with other oxysterols, also detectable in human low density lipoprotein (LDL), cell apoptosis was dramatically reduced. Of note, identical amounts of unoxidized cholesterol did not show any significant pro-apoptotic effect. With the aim to investigate the mechanisms underlying the quenching of 7K-dependent apoptosis by the oxysterol mixture, we found that the combined oxysterol mixture counteracted the ability of 7K given alone to strongly increase the steady-state level of reactive oxygen species (ROS) in macrophages as well as the up-regulation of the pro-apoptotic factor p21 and the triggering of the mitochondria-dependent pathway of apoptosis. Competition among oxysterols, apparently at NADPH oxidase level, diminishes the macrophage ROS production and direct toxicity that is evoked by defined oxysterols, as for instance, 7-ketocholesterol.  相似文献   

10.
Defects in Niemann-Pick, Type C-1 protein (NPC1) cause cholesterol, sphingolipids, phospholipids, and glycolipids to accumulate in lysosomes of liver, spleen, and brain. In cultured fibroblasts, NPC1 deficiency causes lysosomal retention of lipoprotein-derived cholesterol after uptake by receptor-mediated endocytosis. NPC1 contains 1278 amino acids that form 13 membrane-spanning helices and three large loops that project into the lumen of lysosomes. We showed earlier that NPC1 binds cholesterol and oxysterols. Here we localize the binding site to luminal loop-1, a 240-amino acid domain with 18 cysteines. When produced in cultured cells, luminal loop-1 was secreted as a soluble dimer. This loop bound [(3)H]cholesterol (K(d), 130 nM) and [(3)H]25-hydroxycholesterol (25-HC, K(d), 10 nM) with one sterol binding site per dimer. Binding of both sterols was competed by oxysterols (24-, 25-, and 27-HC). Unlabeled cholesterol competed strongly for binding of [(3)H]cholesterol, but weakly for [(3)H]25-HC binding. Binding of [(3)H]cholesterol but not [(3)H]25-HC was inhibited by detergents. We also studied NPC2, a soluble protein whose deficiency causes a similar disease phenotype. NPC2 bound cholesterol, but not oxysterols. Epicholesterol and cholesteryl sulfate competed for [(3)H]cholesterol binding to NPC2, but not NPC1. Glutamine 79 in luminal loop-1 of NPC-1 is important for sterol binding; a Q79A mutation abolished binding of [(3)H]cholesterol and [(3)H]25-HC to full-length NPC1. Nevertheless, the Q79A mutant restored cholesterol transport to NPC1-deficient Chinese hamster ovary cells. Thus, the sterol binding site on luminal loop-1 is not essential for NPC1 function in fibroblasts, but it may function in other cells where NPC1 deficiency produces more complicated lipid abnormalities.  相似文献   

11.

Objectives

The uptake of oxidized LDL (oxLDL) by macrophages is a key initial event in atherogenesis, and the removal of oxidized lipids from artery wall via reverse cholesterol transport is considered antiatherogenic. The aims of this study were to investigate the pathways mediating the removal of oxysterols from oxLDL-loaded macrophages, and the subsequent uptake of the oxysterols by hepatocytes.

Methods

LDL was labeled with [3H]cholesterol, and LDL-[3H]cholesterol was oxidized by copper using a standard method. [3H]oxysterol formation in oxLDL was analyzed by thin layer chromatography. oxLDL-[3H]sterol was incubated with macrophages, allowing the uptake of [3H]sterol by macrophages. [3H]sterol efflux from macrophages mediated by ATP binding cassette transporters (ABCA1, ABCG1), or scavenger receptor class B type I (SR-BI) was measured. The subsequent uptake of the [3H]sterol by hepatocytes was also determined.

Results

7-Ketocholesterol was the major oxysterol formed in oxLDL, and it was significantly higher in oxLDL compared with that in native LDL (naLDL). oxLDL-derived sterol efflux to HDL from macrophages was significantly increased compared with naLDL-derived sterol, and it was mainly mediated by ABCG1, but not by ABCA1 or SR-BI. Moreover, although HDL dose-dependently induced sterol efflux from macrophages, only the exported sterol by ABCG1 pathway was efficiently taken up by hepatocytes.

Conclusions

ABCG1 mediates oxysterol efflux from oxLDL-loaded macrophages, and the exported oxysterol by ABCG1 pathway can be selectively taken up by hepatocytes.  相似文献   

12.
Of the different oxygenated cholesterol metabolites, 7-ketocholesterol (7KCh) is considered a noxious oxy-sterol implicated in the development of certain pathologies, including those found in the eye. Here we elucidated whether sterol 27-hydroxylase cytochrome P450 27A1 (CYP27A1) is involved in elimination of 7KCh from the posterior part of the eye: the neural retina and underlying retinal pigment epithelium (RPE). We first established that the affinities of purified recombinant CYP27A1 for 7KCh and its endogenous substrate cholesterol are similar, yet 7KCh is metabolized at a 4-fold higher rate than cholesterol in the reconstituted system in vitro. Lipid extracts from bovine neural retina and RPE were then analyzed by isotope dilution GC-MS for the presence of the 7KCh-derived oxysterols. Two metabolites, 3β,27-dihydroxy-5-cholesten-7-one (7KCh-27OH) and 3β-hydroxy-5-cholesten-7-one-26-oic acid (7KCh-27COOH), were detected in the RPE but not in the neural retina. 7KCh-27OH was also formed when RPE homogenates were supplemented with NADPH and the mitochondrial redox system. Quantifications in human RPE showed that CYP27A1 is indeed expressed in the RPE at 2-4-fold higher levels than in the neural retina. The data obtained represent evidence for the role of CYP27A1 in retinal metabolism of 7KCh and suggest that, in addition to cholesterol removal, the functions of this enzyme could also include elimination of toxic endogenous compounds.  相似文献   

13.
Oxysterols such as 7 alpha, 25-dihydroxycholesterol (7α,25-OHC) are natural ligands for the Epstein-Barr virus (EBV)-induced gene 2 (EBI2, aka GPR183), a G protein-coupled receptor (GPCR) highly expressed in immune cells and required for adaptive immune responses. Activation of EBI2 by specific oxysterols leads to chemotaxis of B cells in lymphoid tissues. While the ligand gradient necessary for this critical process of the adaptive immune response is established by a stromal cells subset here we investigate the involvement of the oxysterol/EBI2 system in the innate immune response. First, we show that primary human macrophages express EBI2 and the enzymes needed for ligand production such as cholesterol 25-hydroxylase (CH25H), sterol 27-hydroxylase (CYP27A1), and oxysterol 7α-hydroxylase (CYP7B1). Furthermore, challenge of monocyte-derived macrophages with lipopolysaccharides (LPS) triggers a strong up-regulation of CH25H and CYP7B1 in comparison to a transient increase in EBI2 expression. Stimulation of EBI2 expressed on macrophages leads to calcium mobilization and to directed cell migration. Supernatants of LPS-stimulated macrophages are able to stimulate EBI2 signaling indicating that an induction of CH25H, CYP27A1, and CYP7B1 results in an enhanced production and release of oxysterols into the cellular environment. This is a study characterizing the oxysterol/EBI2 pathway in primary monocyte-derived macrophages. Given the crucial functional role of macrophages in the innate immune response these results encourage further exploration of a possible link to systemic autoimmunity.  相似文献   

14.
15.
The sterol storage disorder cerebrotendinous xanthomatosis (CTX) is characterized by abnormal deposition of cholesterol and cholestanol in multiple tissues. Deposition in the central nervous system leads to neurological dysfunction marked by dementia, spinal cord paresis, and cerebellar ataxia. Deposition in other tissues causes tendon xanthomas, premature atherosclerosis, and cataracts. In two unrelated patients with CTX, we have identified different point mutations in the gene (CYP27) encoding sterol 27-hydroxylase, a key enzyme in the bile acid biosynthesis pathway. Transfection of mutant cDNAs into cultured cells results in the synthesis of immunoreactive sterol 27-hydroxylase protein with greatly diminished enzyme activity. We have localized the CYP27 gene to the q33-qter interval of human chromosome 2, and to mouse chromosome 1, in agreement with the autosomal recessive inheritance pattern of CTX. These findings underscore the essential role played by sterols in the central nervous system and suggest that mutations in other sterol metabolizing enzymes may contribute to diseases with neurological manifestations.  相似文献   

16.
In addition to suppressing cholesterol synthesis and uptake, oxysterols also activate glycerophospholipid and SM (sphingomyelin) synthesis, possibly to buffer cells from excess sterol accumulation. In the present study, we investigated the effects of oxysterols on the CDP-choline pathway for PtdCho (phosphatidylcholine) synthesis using wild-type and sterol-resistant CHO (Chinese-hamster ovary) cells expressing a mutant of SCAP [SREBP (sterol-regulatory-element-binding protein) cleavage-activating protein] (CHO-SCAP D443N). [(3)H]Choline-labelling experiments showed that 25OH (25-hydroxycholesterol), 22OH (22-hydroxycholesterol) and 27OH (27-hydroxycholesterol) increased PtdCho synthesis in CHO cells as a result of CCTalpha (CTP:phosphocholine cytidylyltransferase alpha) translocation and activation at the NE (nuclear envelope). These oxysterols also activate PtdCho synthesis in J774 macrophages. in vitro, CCTalpha activity was stimulated 2- to 2.5-fold by liposomes containing 5 mol% 25OH, 22OH or 27OH. Inclusion of up to 5 mol% cholesterol did not further activate CCTalpha. 25OH activated CCTalpha in CHO-SCAP D443N cells leading to a transient increase in PtdCho synthesis and accumulation of CDP-choline. CCTalpha translocation to the NE and intranuclear tubules in CHO-SCAP D443N cells was complete after 1 h exposure to 25OH compared with only partial translocation by 4-6 h in CHO-Mock cells. These enhanced responses in CHO-D443N cells were sterol-dependent since depletion with cyclodextrin or lovastatin resulted in reduced sensitivity to 25OH. However, the lack of effect of cholesterol on in vitro CCT activity indicates an indirect relationship or involvement of other sterols or oxysterol. We conclude that translocation and activation of CCTalpha at nuclear membranes by side-chain hydroxylated sterols are regulated by the cholesterol status of the cell.  相似文献   

17.
The mitochondrial sterol 27-hydroxylase (CYP27A1) is required for degradation of the C27-sterol side chain in bile acid biosynthesis. CYP27A1 seems, however, to have roles beyond this, as illustrated by patients with a deficient sterol 27-hydroxylase due to mutations of the CYP27A1 gene [cerebrotendinous xanthomatosis (CTX)]. These subjects have symptoms ranging from accumulation of bile alcohols and cholestanol to accelerated atherosclerosis and progressive neurologic impairment. The present work describes a detailed investigation on the substrate specificity of recombinant human CYP27A1. In accordance with some previous work with rat liver mitochondria, the activity in general increased with the polarity of the substrate. An obvious example was the finding that cholesterol was 27-hydroxylated more efficiently than cholesterol oleate but less efficiently than cholesterol sulfate. The oxysterols 24S-hydroxycholesterol and 25-hydroxycholesterol were 27-hydroxylated less efficiently than cholesterol, possibly due to steric hindrance. Surprisingly, sterols with a 3-oxo-Delta4 structure were found to be hydroxylated at a much higher rate than the corresponding sterols with a 3beta-hydroxy-Delta5 structure. The rates of hydroxylation of the sterols were: 7alpha-hydroxy-4-cholesten-3-one>4-cholesten-3-one>7alpha-hydroxycholesterol>24-hydroxy-4-cholesten-3-one> cholesterol>25-hydroxy-4-cholesten-3-one>24-hydroxycholesterol>or=25-hydroxycholesterol. The possibility is discussed that the findings may have implications for oxysterol-mediated regulation of gene expression. The very high activity of CYP27A1 towards the cholestanol precursor 4-cholesten-3-one may be of importance in connection with the accumulation of cholestanol in patients with CTX.  相似文献   

18.
Cerebrotendinous xanthomatosis (CTX) is a rare neurodegenerative disorder with cholestanol accumulation resulting from mutations in the sterol 27-hydroxylase gene (CYP27A). Conventional treatment includes chenodeoxycholic acid and HMG-CoA reductase inhibitors. Mice with disrupted Cyp27A (Cyp27 KO) do not show elevated cholestanol levels nor develop CTX manifestations. This phenomenon was proposed to be due to murine CYP3A overexpression leading to an alternative pathway for degradation of bile alcohols including cholestanol. Our objective was to examine the influence of CYP3A4 induction on cholestanol elimination in CTX patients. Rifampicin (600 mg/day x 7 days), known to induce the PXR, and thereby to increase CYP3A activity, was used. The degree of CYP3A4 induction was assessed by comparing midazolam pharmacokinetics before and after rifampicin treatment. Cholestanol levels and cholestanol/cholesterol ratios were assayed during the experimental period and compared to a 3 weeks period without treatment. The results show that despite 60% increase in CYP3A4 activity following rifampicin treatment, there is no significant change in cholestanol levels. We conclude that up-regulated expression of CYP3A affects cholestanol elimination in mice differently as compared to its effect in CTX patients. Therefore, CYP3A4 inducers cannot replace chenodeoxycholic acid for the treatment of CTX.  相似文献   

19.
7-Ketocholesterol is a bioactive sterol, a potent competitive inhibitor of cytochrome P450 7A1, and toxic in liver cells. Multiple origins of this compound have been identified, with cholesterol being the presumed precursor. Although routes for formation of the 7-keto compound from cholesterol have been established, we found that 7-dehydrocholesterol (the immediate precursor of cholesterol) is oxidized by P450 7A1 to 7-ketocholesterol (k(cat)/K(m) = 3 × 10(4) m(-1) s(-1)). P450 7A1 converted lathosterol (Δ(5)-dihydro-7-dehydrocholesterol) to a mixture of the 7-keto and 7α,8α-epoxide products (~1:2 ratio), with the epoxide not rearranging to the ketone. The oxidation of 7-dehydrocholesterol occured with predominant formation of 7-ketocholesterol and with the 7α,8α-epoxide as only a minor product; the synthesized epoxide was stable in the presence of P450 7A1. The mechanism of 7-dehydrocholesterol oxidation to 7-ketocholesterol is proposed to involve a Fe(III)-O-C-C(+) intermediate and a 7,8-hydride shift or an alternative closing to yield the epoxide (Liebler, D. C., and Guengerich, F. P. (1983) Biochemistry 22, 5482-5489). Accordingly, reaction of P450 7A1 with 7-[(2)H(1)]dehydrocholesterol yielded complete migration of deuterium in the product 7-ketocholesterol. The finding that 7-dehydrocholesterol is a precursor of 7-ketocholesterol has relevance to an inborn error of metabolism known as Smith-Lemli-Opitz syndrome (SLOS) caused by defective cholesterol biosynthesis. Mutations within the gene encoding 7-dehydrocholesterol reductase, the last enzyme in the pathway, lead to the accumulation of 7-dehydrocholesterol in tissues and fluids of SLOS patients. Our findings suggest that 7-ketocholesterol levels may also be elevated in SLOS tissue and fluids as a result of P450 7A1 oxidation of 7-dehydrocholesterol.  相似文献   

20.
Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantitating cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for the development of a high-throughput assay to screen large numbers of serum as would be required in studying the link between efflux and CAD. We compared efflux using a fluorescent sterol (boron dipyrromethene difluoride linked to sterol carbon-24, BODIPY-cholesterol) with that of [(3)H]cholesterol in J774 macrophages. Fractional efflux of BODIPY-cholesterol was significantly higher than that of [(3)H]cholesterol when apo A-I, HDL(3), or 2% apoB-depleted human serum were used as acceptors. BODIPY-cholesterol efflux correlated significantly with [(3)H]cholesterol efflux (p < 0.0001) when apoB-depleted sera were used. The BODIPY-cholesterol efflux correlated significantly with preβ-1 (r(2) = 0.6) but not with total HDL-cholesterol. Reproducibility of the BODIPY-cholesterol efflux assay was excellent between weeks (r(2) = 0.98, inter-assay CV = 3.31%). These studies demonstrate that BODIPY-cholesterol provides an efficient measurement of efflux compared with [(3)H]cholesterol and is a sensitive probe for ABCA1-mediated efflux. The increased sensitivity of BODIPY-cholesterol assay coupled with the simplicity of measuring fluorescence results in a sensitive, high-throughput assay that can screen large numbers of sera, and thus establish the relationship between cholesterol efflux and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号