首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To understand how the differentiation of stem cells to oligodendroglial progenitors is regulated, we established cultures of neural stem cells from neonatal rat striatum in the presence of epidermal growth factor (EGF) as free-floating neurospheres that were then exposed to an increasing amount of B104 cell-conditioned medium (B104CM). The resultant cells proliferated in response to B104CM but no longer to EGF. In vitro analysis and transplantation studies indicated that these cells were committed to the oligodendroglial lineage, and they were thus referred to as oligospheres. Further characterization of their expression of early markers, cell cycle, migration, and self-renewal suggests that they were pre-O2A progenitors. RT-PCR analysis indicated that the oligosphere cells expressed mRNAs of platelet-derived growth factor α receptor in addition to fibroblast growth factor receptor but not EGF receptor; the latter two receptor mRNAs were expressed by neurosphere cells. Thus, the progression of stem cells to oligodendroglial progenitors is likely induced by factors in B104CM.  相似文献   

2.
As a result of recent advances in flow cytometry, renewed interest is shown in modeling the kinetic behavior of cells in culture on the basis of cell cycle parameters. An important but often overlooked kinetic variable in hybridoma cultures is the cell death rate. Not only the overall cell growth but also the kinetics of nutrient metabolism and monoclonal antibody production have been shown to depend on the cell death rate in continuous suspension hybridoma cultures. The present study shows that the death rate in hybridoma cultures is proportional to the fraction of cells arrested in the G(1) phase of the cell cycle. The steady-state cell age distributions in the various phases of the division cycle have been calculated analytically. A simple mathematical model has been used to produce the profiles of the cycling and arrested cell fractions with respect to the dilution rate. The calculated steady-state growth rate, death rate, and viability profiles are shown to be in agreement with recently published experimental data from continuous suspension hybridoma cultures. (c) 1992 John Wiley & Sons, Inc.  相似文献   

3.
Abstract: Oligodendroglial cell death in the myelin proteolipid protein (PLP) mutants can be partially rescued by the environment factor(s) supplied by the wild-type cells in vivo and in vitro. It is possible that the presence of PLP or DM-20 results in secretion of a factor or factors in the CNS influencing oligodendrocyte development. We previously showed that DM-20 mRNA is produced in G26 mouse oligodendroglioma, B104 rat neuroblastoma, and B16 mouse melanoma but not in NIH3T3 mouse fibroblast cell lines. Culture supernatants from these cell lines were added to primary glial cell cultures from embryonic day 17 mouse brain. After 4 days, the number of oligodendrocytes present in cultures with supernatants from DM-20-producing cells (G26, B104, and B16) was significantly higher than that of control cultures but not with the NIH3T3 supernatant. To investigate more directly whether the PLP gene expression is involved in this process, NIH3T3 cells (nonneural cells) were forced to produce PLP or DM-20. By addition of the supernatants from the PLP/DM-20 transformants, the number of oligodendrocytes in the mixed glial cell cultures increased. This clearly demonstrates that the expression of the PLP gene is sufficient for and directly associated with secretion of a factor, which influences the oligodendrocyte development.  相似文献   

4.
Cork tissues increased secondary metabolite production of various plant cell cultures in a different manner from those of conventional elicitors. In Sophora flavescens and Glycyrrhiza glabra cultured cells, cork tissues increased the amounts of both lipophilic and hydrophilic flavonoids without affecting the cell growth, although elicitors such as copper ion and yeast extracts showed a clear inhibition of cell growth with the increasing amount of these lipophilic ones. The validity of this effect of cork tissues covered a wide range of aromatic compounds produced by suspension cell cultures derived from diverse plant species. Woody tissues of Japanese cypress had a very similar effect to that of cork. Partial purification of cork tissues suggested that the production-stimulating factor was present in the hemicellulose B fraction that was not included in the dedifferentiated cultured tissues.  相似文献   

5.
We investigated the mechanisms of anti-IgM antibody-induced cell death in a recently established human surface IgM+ IgD+ B lymphoma cell line, B104, the growth of which is irreversibly inhibited by anti-IgM antibody but not by anti-IgD antibody, and compared it with the cell death of T cells via TCR/CD3 complex and with the cell death of a murine anti-IgM antibody-sensitive B lymphoma cell line, WEHI-231. The rapid time course of B104 cell death and its requirements for de novo macromolecular synthesis and Ca2+ influx suggest that anti-IgM antibody-induced B104 cell death is an active Ca(2+)-dependent programmed cell death. Moreover, cyclosporin A rescued B104 cells from this lethal signal, via surface IgM, suggesting that the intracellular mechanisms involved are quite similar to those of T cell death. DNA fragmentation, which has been reported in TCR/CD3 complex-mediated T cell death, apoptosis, was not involved in the B104 cell death process, but the possible involvement of DNA single-strand breaks was suggested. Observations under light microscopy and transmission electron microscopy indicated that the morphologic features of dying B104 cells resembled necrosis rather than apoptosis. B104 cell death was shown to be quite distinct from that of WEHI-231 in cell death kinetics, the mode of cell death, and the response to cyclosporin A. These data collectively indicate that the death of B104 cells resulting from surface IgM cross-linking represents a hitherto undefined mode of programmed cell death.  相似文献   

6.
Neuronal number in the mature CNS is determined by the balance of cell proliferation and death. The effects of ethanol on cell proliferation and death were examined in primary cultures of neocortical neurons derived from 16-day-old rat fetuses. The cells were treated with ethanol (0 or 400 mg/dl) and examined for (1) immunohistochemical identity, (2) cell cycle kinetics using a cumulative bromodeoxyuridine labeling technique, (3) viable cell number via a trypan blue assay, and (4) the incidence of cell death with terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and caspase 3 immunhistochemistry. After two days in culture, most (>85%) cells expressed a neuron-specific antigen(s) whether or not ethanol was added to the culture medium. Ethanol affected the proliferation of the cultured cells, e.g., the length of the cell cycle was greater in the ethanol-treated cells than in controls. The number of trypan blue-negative (viable) cells was profoundly decreased by ethanol exposure. This decrease was accompanied by increases in the frequencies of TUNEL- and caspase 3-positive cells and of cells exhibiting nuclear condensations. Thus, ethanol decreases the number of viable cells in vitro by slowing cell proliferation and increasing the incidence of cell death. The expression of the death indices in untreated cultures is most consistent with a single (apoptotic) pathway of cell death, rather than simultaneous apoptotic and necrotic modes of death. Furthermore, it appears that ethanol initiates an apoptotic death among cultured cortical neurons.  相似文献   

7.
SFME cells are brain-derived neural precursor cells that are acutely dependent on epidermal growth factor (EGF) for survival, undergoing apoptosis within 24 h after EGF withdrawal. Because the expression of the protooncogene bcl-2 inhibits apoptosis induced by the withdrawal of interleukins or nerve growth factor in some growth factor-dependent haematopoietic or neuronal cell cultures, we examined the effect of Bcl-2 expression on cell death of SFME cells in the absence of EGF. SFME cells expressing human Bcl-2 showed prolonged survival when deprived of EGF compared to control cells not expressing Bcl-2. A significant fraction of Bcl-2-expressing cells remained viable for 4 days in the absence of EGF and resumed proliferation upon readdition of EGF to the cultures. These results suggest that apoptosis induced by EGF withdrawal in SFME cells may share common mechanisms with other growth factor-related apoptotic systems.  相似文献   

8.
Previously, it was shown that SV40-induced cell transformation of human diploid (2N), epithelial cells was a dynamic process of nuclear and cellular events. In this process, nuclei of polyploid (above 2N) cells broke down into multinucleated cells (MNCs) by amitotic division. An induced mass karyoplast (i.e., small cell with reduced amount of cytoplasm) budding process from the MNCs produced transformed cells with extended life span (EL) and altered morphology. In this study, without the use of SV40 and no induction of karyoplast budding, the same sequence of cellular events was found to occur spontaneously for the same type of cells at replicative senescence (no mitosis). These cell transformation events were followed by phase-contrast photography of living cell cultures. Primary, diploid, epithelial cell cultures grew for two to three passages and then entered senescence. Cells remaining in the cultures after widespread cell death (mortality stage 1; M1) developed the typical large, flat-cell morphology of senescence with increased cytoplasmic volume. Some of these cells were MNCs, mostly with two to four nuclei. Cytokinesis in MNCs and spontaneous karyoplast budding from MNCs were observed, and new, limited EL cell growth was present either in foci of cells or as prolonged cell growth over one to two passages. At the end of their replicative phase, the EL cells entered another death crisis (M2) from which no cells survived. In M2-crisis, rarely transformed cells appear with immortal cell growth characteristics (i.e., cell lines). Numerous examples of fragmentation or amitosis of polyploid nuclei in the production of multinucleated cells (MNCs) are presented. Such nuclear divisions produced nuclei with unequal sizes, which suggest unbalanced chromosomal segregations. The nuclear and cellular events in cell transformation are compared with a natural (no induction) occurrence of MNC-offspring cells in mammalian placentas. The possibility of a connection between these two processes is discussed. And finally the difference in the duration of EL cell growth from SV40-MNCs versus from senescent-MNCs is ascribed to increased mutational load in SV40-induced MNCs as compared with that in senescence MNCs.  相似文献   

9.
The subcommissural organ (SCO) is a specialized ependymal structure of the brain that secretes glycoproteins into the cerebrospinal fluid (CSF), which condense to form a thread-like structure - Reissner's fiber (RF). The effects of soluble material released by RF were examined on neuroblastoma B104 cells grown in serum-free medium, using "low-density" and "high-density" culture systems. In the presence of soluble RF material, low-density cultures were suitable for analysis of the enhanced neurite outgrowth of B104 cells, while high-density cultures allowed the increased B104 cell aggregation to be examined. RF-induced neuronal aggregation and neuritic outgrowth were restricted to a perimeter around the RF. This standardized cell culture system reproduced in part the effects observed previously with primary cortical and spinal cord cell cultures and may serve the analysis of the mechanisms leading to aggregation and neurite outgrowth. In the present study, we analyzed variations in the rate of neural cell adhesion molecules, such as N-CAM and N-cadherin, induced by soluble RF material in high-density cultures.  相似文献   

10.
11.
An EBNA- human B lymphoma cell line, B104, was established. B104 cells express IgD as well as IgM on their surface, which is thought to be a basic characteristic of mature B cells. The growth of B104 cells was inhibited by treatment with a panel of anti-IgM antibodies. Cell cycle analyses revealed that the transition of B104 cells from the G2/M to the G0/G1 phase of the cell cycle was markedly inhibited by treatment with anti-IgM antibodies. Progression of B104 cells to the M phase of the cell cycle was found to be suppressed in the presence of anti-IgM antibodies. In contrast, both the entrance of G0/G1 phase cells into the S phase and the progression of S phase cells to the G2/M phase of the cell cycle did not seem to be inhibited significantly by treatment with anti-IgM antibodies. These results indicate that the mechanism of the inhibition of growth of B104 cells by anti-IgM antibodies is blockage of the transition from the G2 to the M phase of the cell cycle. In contrast to anti-IgM antibodies, anti-IgD antibodies could not cause growth inhibition of B104 cells at all. B cell growth factors such as IL-4 and IL-6 had no effect on the inhibition of growth of B104 cells by anti-IgM antibody. IFN-alpha and -beta, which have no B cell growth factor activity, did increase the number of cells that survived the treatment with anti-IgM antibodies. B104 is an excellent experimental model for the study of the mechanism of signal transduction through sIg as well as the functional difference between sIgM and sIgD.  相似文献   

12.
The expression and activity of factors influencing early neuronal development are altered by ethanol. Such factors include growth factors, for example, platelet-derived growth factor and basic fibroblast growth factor (for cell proliferation), and cell adhesion molecules (for neuronal migration). One agent, transforming growth factor beta1 (TGFbeta1), may affect both events. We tested the hypothesis that ethanol alters myriad TGFbeta1-mediated activities [i.e., cell proliferation and neural cell adhesion molecule (N-CAM) expression] using B104 neuroblastoma cells. TGFbeta1 inhibited the proliferation of B104 cells as evidenced by decreases in cell number and [3H]thymidine ([3H]dT) incorporation. TGFbeta1 induced sustained activation of extracellular signal-regulated kinases (ERKs), which are part of the family of mitogen-activated protein kinases (MAPKs). Treatment with PD98059 (a MAPK kinase blocker) abolished TGFbeta1-regulated inhibition of [3H]dT incorporation. TGFbeta1-mediated growth inhibition was potentiated by ethanol exposure. Ethanol also produced prolonged activation of ERK, an effect that was partially eliminated by treatment with PD98059. On the other hand, TGFbeta1 up-regulated N-CAM expression, and this up-regulation was not affected by treatment with PD98059. Ethanol inhibited the TGFbeta1-induced up-regulation of N-CAM expression in a concentration-dependent manner. Thus, TGFbeta1 affects ERK-dependent cell proliferation and ERK-independent N-CAM expression in B104 cells. Both activities are sensitive to ethanol and may underlie the ethanol-induced alterations in the proliferation and migration of CNS neurons.  相似文献   

13.
The cell cycle kinetics of Escherichia coli B/r A and B/r K cells were studied by flow cytometry. Three-dimensional histograms of cell cultures show the number of cells as a function of cellular DNA and protein contents and give detailed pictures of the cell cycle distribution with regard to these parameters. Histograms of slowly growing chemostat cultures showed that cell cycle periods B and C + D increase with a decreasing growth rate and that the B period occupies an increasing fraction of the cycle. The DNA replication patterns of B/r A and K were found to be quite similar. At extremely low growth rates (doubling time [T] = 17 h), B/r A cells had a B period of 0.8 T, a C period of 0.1 T, and a D period of 0.1 T, and B/r K cells (T = 16 h) had a B period of 0.6 T, a C period of 0.15 T, and a D period of 0.25 T. Mass increase, i.e., essentially protein synthesis, was seen in all three periods of the cell cycle. For B/r A cells, the average rate of mass increase was 11 times greater in the D period than in the B period, whereas for B/r K cells the rate of mass increase was twice as great in the D period as in the B period. The DNA and cell size distributions of batch cultures in exponential growth were found to vary with time, indicating that such cultures are not suitable for studies of cell cycle kinetics.  相似文献   

14.
Streptomyces griseus S 104 was sensitive to streptomycin during exponential growth in a medium which, in the subsequent stationary phase, supported production of the antibiotic in yields above 200 mug/ml. When antibiotic production began cultures developed a tolerance toward their lethal metabolite. This was not due to an increase in pH associated with antibiotic production, since pH effects on streptomycin sensitivity in S. griseus were in the reverse direction. However, the degree of tolerance was directly related to the amount of cell material present. Streptomycin production caused no change in the proportion of resistant variants in the population, nor did it cause the severe inhibition of protein synthesis observed in non-producing cultures exposed to the antibiotic. The lack of an effect on protein synthesis is attributed to the absence of streptomycin with in the cytoplasm since soluble extracts from mycelium harvested in the production phase were inactive when bioassayed immediately after cell disruption. However, they developed antibacterial activity rapidly when heated, and more slowly when incubated at 25 degrees C. The addition of phosphatase inhibitors during incubation prevented the appearance of antibiotic activity, and it was concluded that a small amount of streptomycin phosphate is present in the mycelium during antibiotic production. Differences in (14C) streptomycin uptake suggested that the mycelium was appreciably less permeable to the antibiotic in the production phase than during exponential growth. However, a small amount was taken up and much of it was in the soluble fraction of disrupted cells. Bioassays showed that this 14C-labeled antibiotic within the cells had been partially inactivated, suggesting that conversion of streptomycin to an inactive derivative is involved in the mechanism which protects the organism from its metabolite.  相似文献   

15.
When quiescent cells in monolayer culture are stimulated to proliferate with growth factor, the entry into S-phase or mitosis appears to follow first-order kinetics, with a probability to enter the cell cycle that depends on growth factor concentration (Smith and Martin, 1973). Suboptimal growth factor concentrations also lead to a decreased fraction of the cell population that responds to the stimulation (Brooks et al., 1984). Using flow cytometry, we have re-investigated this dual effect of growth factor concentration on cultures of quiescent normal human skin fibroblasts, stimulated with submaximal concentrations of fetal calf serum, epidermal growth factor, and platelet-derived growth factor. The size of the responding population decreased with decreasing concentration of growth factor, but the time course of cell division within this responding population was identical for all growth factor concentrations. This is in conflict with previous concepts and indicates that the entry into the proliferative state is based on a decision mechanism that cannot be adequately described using transition probabilities determined by mitogen concentration.  相似文献   

16.
To date enormous attempts have been devoted to improve Taxol production exploiting various methodologies from bioprocess engineering to biotechnological and synthetic approaches. We have developed a 2-stage suspension cell culture of Taxus baccata L. using modified B5 medium in order to improve cell growth as well as productivity. After callus induction and cell line selection, B5 medium was supplemented with vanadyl sulfate (0.1 mg/l), silver nitrate (0.3 mg/l) and cobalt chloride (0.25 mg/l) at the first day of stage I culture to maximize cell growth. This medium was further supplemented with sucrose (1%) and ammonium citrate (50 mg/l) on day 10 and sucrose (1%) and phenylalanine (0.1 mM) on day 20 (i.e., biomass growth medium). At stage II (day 25), two different concentrations of several elicitors such as methyl jasmonate (10 or 20 mg/l), salicylic acid (50 or 100 mg/l) and fungal elicitor (25 or 50 mg/l) were added to the biomass growth medium with the aim of improving cellular productivity. For morphological analysis, microscopic inspection was carried out during cultivation. Cell-associated and extracellular amount of Taxol were detected and measured using HPLC methodology. At stage I, overall Taxol amount of biomass growth medium was 13.75 mg/l (i.e., 5.6-fold higher than that of untreated B5 control). At stage II, treated cells with methyl jasmonate (10 mg/l), salicylic acid (100 mg/l) and fungal elicitor (25 mg/l) produced the highest amount of Taxol (39.5 mg/l), which is 16-fold higher than that of untreated B5 control (2.45 mg/l). Microscopic analyses of Taxus cells in suspension cultures showed various positional auto-fluorescence showing direct correlation with Taxol production. Our studies revealed that intervallic supplementation of B5 medium with combination of biomass growth factors at stage I and mixture of elicitors at stage II could significantly increase Taxol production. Thus, we suggest that the exploitation of this methodology may improve the production of Taxol since demands for Taxol pharmaceuticals are increasingly growing and resource paucities have limited its direct harvesting from Taxus trees.  相似文献   

17.
18.
The growth and differentiation of B cells to immunoglobulin (Ig)-secreting cells is regulated by a variety of soluble factors. This study presents data that support a role for transforming growth factor (TGF)-beta in this regulatory process. B lymphocytes were shown to have high-affinity receptors for TGF-beta that were increased fivefold to sixfold after in vitro activation. The addition of picogram quantities of TGF-beta to B cell cultures suppressed factor-dependent, interleukin 2 (IL 2) B cell proliferation and markedly suppressed factor-dependent (IL 2 or B cell differentiation factor) B cell Ig secretion. In contrast, the constitutive IgG production by an Epstein Barr virus-transformed B cell line was not modified by the presence of TGF-beta in culture. This cell line was found to lack high-affinity TGF-beta receptors. The degree of inhibition of B cell proliferation observed in in vitro cultures was found to be dependent not only on the concentration of TGF-beta added but also on the concentration of the growth stimulatory substance (IL 2) present. By increasing the IL 2 concentrations in culture, the inhibition of proliferation induced by TGF-beta could be partially overcome. In contrast, the inhibition of Ig secretion induced by TGF-beta could not be overcome by a higher concentration of stimulatory factor, demonstrating that the suppression of B cell differentiation by TGF-beta is not due solely to its effects on proliferation. Furthermore, it was demonstrated that B lymphocytes secrete TGF-beta. Unactivated tonsillar B cells had detectable amounts of TGF-beta mRNA on Northern blot analysis, and B cell activation with Staphylococcus aureus Cowan (SAC) resulted in a twofold to threefold increase in TGF-beta mRNA. Supernatants conditioned by unactivated B cells had small amounts of TGF-beta, SAC activation of the B cells resulted in a sixfold to sevenfold increase in the amount of TGF-beta present in the supernatants. Thus, B lymphocytes synthesize and secrete TGF-beta and express receptors for TGF-beta. The addition of exogenous TGF-beta to cultures of stimulated B cells inhibits subsequent proliferation and Ig secretion. TGF-beta may function as an autocrine growth inhibitor that limits B lymphocyte proliferation and ultimate differentiation.  相似文献   

19.
Adrenocorticotropin (ACTH) was found to enhance the growth and differentiation of human B lymphocytes. By using highly purified preparations of human tonsillar B cells, the effects of ACTH on the growth and differentiation of in vitro activated B cells were examined. Optimal concentrations of ACTH were found to increase the proliferation of activated B cells by twofold to threefold when ACTH was present in culture with either a B cell growth factor or recombinant interleukin 2 (IL 2). ACTH had essentially no effects when added to cultures of activated B cells in the absence of the growth factor. Additionally, when ACTH was added in conjunction with an optimal concentration of either a B cell differentiation factor or IL 2 to cultures of activated B cells, the combination of ACTH and factor enhanced Ig secretion by twofold compared with the factor alone. In the absence of the differentiative signal, ACTH had minimal effects on Ig production. Only the first 24 amino acid fragments of ACTH were required to enhance B cell growth and differentiation when combined with the appropriate, more classical signals. Thus, ACTH may have a physiologic role in regulating human B cell function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号