首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Liver cancer in men is the second leading cause of cancer death and hepatocellular carcinoma (HCC) accounts for 70%-85% of the total liver cancer worldwide. Chronic infection with hepatitis B virus (HBV) is the major cause of HCC. Chronic, intermittently active inflammation provides “fertile field” for “mutation, selection, and adaptation” of HBV and the infected hepatocytes, a long-term evolutionary process during HBV-induced carcinogenesis. HBV mutations, which are positively selected by insufficient immunity, can promote and predict the occurrence of HCC. Recently, advanced sequencing technologies including whole genome sequencing, exome sequencing, and RNA sequencing provide opportunities to better under-stand the insight of how somatic mutations, structure variations, HBV integrations, and epigenetic modifications contribute to HCC development. Genomic variations of HCC caused by various etiological factors may be different, but the common driver mutations are important to elucidate the HCC evolutionary process. Genome-wide analyses of HBV integrations are helpful in clarifying the targeted genes of HBV in carcinogenesis and disease progression. RNA sequencing can identify key molecules whose expressions are epigenetically modified during HCC evolution. In this review, we summarized the current findings of next generation sequencings for HBV-HCC and proposed a theory framework of Cancer Evolution and Development based on the current knowledge of HBV-induced HCC to characterize and interpret evolutionary mechanisms of HCC and possible other cancers. Understanding the key viral and genomic variations involved in HCC evolution is essential for generating effective diagnostic, prognostic, and predictive biomarkers as well as therapeutic targets for the interventions of HBV-HCC.  相似文献   

2.
MHC class I polypeptide-related chain A (MICA) molecule is induced in response to viral infection and various types of stress. We recently reported that a single nucleotide polymorphism (SNP) rs2596542 located in the MICA promoter region was significantly associated with the risk for hepatitis C virus (HCV)-induced hepatocellular carcinoma (HCC) and also with serum levels of soluble MICA (sMICA). In this study, we focused on the possible involvement of MICA in liver carcinogenesis related to hepatitis B virus (HBV) infection and examined correlation between the MICA polymorphism and the serum sMICA levels in HBV-induced HCC patients. The genetic association analysis revealed a nominal association with an SNP rs2596542; a G allele was considered to increase the risk of HBV-induced HCC (P = 0.029 with odds ratio of 1.19). We also found a significant elevation of sMICA in HBV-induced HCC cases. Moreover, a G allele of SNP rs2596542 was significantly associated with increased sMICA levels (P = 0.009). Interestingly, HCC patients with the high serum level of sMICA (>5 pg/ml) exhibited poorer prognosis than those with the low serum level of sMICA (≤5 pg/ml) (P = 0.008). Thus, our results highlight the importance of MICA genetic variations and the significance of sMICA as a predictive biomarker for HBV-induced HCC.  相似文献   

3.
Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), which is a highly aggressive cancer. HBV X protein (HBx), one of four HBV gene products, plays pivotal roles in the development and metastasis of HCC. It has been reported that HBx induces liver cancer cell migration and reorganizes actin cytoskeleton, however the molecular basis for actin cytoskeleton reorganization remains obscure. In this study, we for the first time report that HBx promotes actin polymerization and liver cancer cell migration by regulating calcium modulated protein, calmodulin (CaM). HBx physically interacts with CaM to control the level of phosphorylated cofilin, an actin depolymerizing factor. Mechanistically, HBx interacts with CaM, liberates Hsp90 from its inhibitory partner CaM, and increases the activity of Hsp90, thus activating LIMK1/cofilin pathway. Interestingly, the interaction between HBx and CaM is calcium-dependent and requires the CaM binding motif on HBx. These results indicate that HBx modulates CaM which plays a regulatory role in Hsp90/LIMK1/cofilin pathway of actin reorganization, suggesting a new mechanism of HBV-induced HCC metastasis specifically derived by HBx.  相似文献   

4.
Wang Q  Na B  Ou JH  Pulliam L  Yen TS 《PloS one》2012,7(5):e36818
Hepatitis B virus (HBV) is a major etiological factor of hepatocellular carcinoma (HCC). However, the precise pathogenetic mechanisms linking HBV infection and HCC remain uncertain. It has been reported that decreased antioxidant enzyme activities are associated with severe liver injury and hepatocarcinogenesis in mouse models. It is unclear if HBV can interfere with the activities of antioxidant enzymes. We established a HBV transgenic mouse line, which spontaneously developed HCC at 2 years of age. We studied the activities of the antioxidant enzymes in the liver of the HBV transgenic mice. Our results showed that the antioxidant enzymes glutathione peroxidase and superoxide dismutase 2 were down-regulated in HBV transgenic mice and correlated with JNK activation. HBV enhanced the Fas-mediated activation of caspase 6, caspase 8 and JNK without enhancing the activation of caspase 3 and hepatocellular apoptosis. As a proper redox balance is important for maintaining cellular homeostasis, these effects of HBV on the host antioxidant system and Fas-signaling may play an important role in HBV-induced hepatocarcinogenesis.  相似文献   

5.
Du J  Liang X  Liu Y  Qu Z  Gao L  Han L  Liu S  Cui M  Shi Y  Zhang Z  Yu L  Cao L  Ma C  Zhang L  Chen Y  Sun W 《Cell death and differentiation》2009,16(2):219-229
Hepatitis B virus (HBV) causes chronic hepatitis in hundreds of millions of people worldwide, which can eventually lead to hepatocellular carcinoma (HCC). The molecular mechanisms underlying HBV persistence are not well understood. TRAIL, the TNF-related apoptosis-inducing ligand, has recently been implicated in hepatocyte death during HBV infection. We report here that the HBV core protein (HBc) is a potent inhibitor of TRAIL-induced apoptosis. Overexpressing HBc significantly decreased TRAIL-induced apoptosis of human hepatoma cells, whereas knocking-down HBc expression in hepatoma cells transfected with HBV genome enhanced it. When present in the same cell, HBc blocked the pro-apoptotic effect of the HBV X protein (HBx). The resistance of HBc-expressing cells to TRAIL-induced apoptosis was associated with a significant reduction in death receptor 5 (DR5) expression. Upon transfection, HBc significantly repressed the promoter activity of the human DR5 gene. Importantly, HBc gene transfer inhibited hepatocyte death in a mouse model of HBV-induced hepatitis; and in patients with chronic hepatitis, DR5 expression in the liver was significantly reduced. These results indicate that HBc may prevent hepatocytes from TRAIL-induced apoptosis by blocking DR5 expression, which in turn contributes to the development of chronic hepatitis and HCC. They also call into question the potential side effects of HBc-based vaccines.  相似文献   

6.
7.
Hepatitis B virus (HBV) infection afflicts >300 million people worldwide and is a leading cause of hepatocyte death, cirrhosis, and hepatocellular carcinoma. While the morphological characteristics of dying hepatocytes are well documented, the molecular mechanisms leading to the death of hepatocytes during HBV infection are not well understood. TRAIL, the TNF-related apoptosis-inducing ligand, has recently been implicated in the death of hepatocytes under certain inflammatory but not normal conditions. To determine the potential roles of TRAIL in HBV-induced hepatitis, we examined the effects of HBV and its X protein (HBx) on TRAIL-induced hepatocyte apoptosis both in vivo and in vitro. We found that hepatitis and hepatic cell death in HBV transgenic mice were significantly inhibited by a soluble TRAIL receptor that blocks TRAIL function. We also found that HBV or HBx transfection of a hepatoma cell line significantly increased its sensitivity to TRAIL-induced apoptosis. The increase in TRAIL sensitivity were associated with a dramatic up-regulation of Bax protein expression. Knocking down Bax expression using Bax-specific small interference RNA blocked HBV-induced hepatitis and hepatocyte apoptosis. The degradation of caspases 3 and 9, but not that of Bid or caspase-8, was preferentially affected by Bax knockdown. These results establish that HBV sensitizes hepatocytes to TRAIL-induced apoptosis through Bax and that Bax-specific small interference RNA can be used to inhibit HBV-induced hepatic cell death.  相似文献   

8.
肝细胞癌 (hepatocellular carcinoma, HCC)是我国最常见的恶性肿瘤之一,而HBV慢性感染是肝癌发生的主要原因.乙型肝炎病毒(HBV)中X基因编码的一种多功能蛋白(HBx),参与众多重要生物学过程的调控,并促进肝细胞癌的发生. 早期研究表明,HBx在HCC发生过程中发挥重要的调控功能,但其确切分子机制尚未完全明确. 近几年,HBx参与生物学过程的分子机制研究有了较快的进展. 有趣的是,研究发现,HBx在不同的细胞系以及HBV感染的不同阶段发挥促抑凋亡的双重作用,HBx还参与细胞自噬的调控. 此外,在HBx参与细胞增殖及肿瘤侵袭和转移等方面,也产生了一些新的认识. 本文将从HBx对肝细胞凋亡、自噬和增殖的调控及其对肝癌细胞转移和侵袭的调控等方面,对HBx参与肝细胞癌发生发展调控机制做一综述.  相似文献   

9.
The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology.  相似文献   

10.
11.
We aimed to identify genomic markers in hepatitis B virus (HBV) that are associated with hepatocellular carcinoma (HCC) development by comparing the complete genomic sequences of HBVs among patients with HCC and those without. One hundred patients with HBV-related HCC and 100 age-matched HBV-infected non-HCC patients (controls) were studied. HBV DNA from serum was directly sequenced to study the whole viral genome. Data mining and rule learning were employed to develop diagnostic algorithms. An independent cohort of 132 cases (43 HCC and 89 non-HCC) was used to validate the accuracy of these algorithms. Among the 100 cases of HCC, 37 had genotype B (all subgenotype Ba) and 63 had genotype C (16 subgenotype Ce and 47 subgenotype Cs) HBV infection. In the control group, 51 had genotype B and 49 had genotype C (10 subgenotype Ce and 39 subgenotype Cs) HBV infection. Genomic algorithms associated with HCC were derived based on genotype/subgenotype-specific mutations. In genotype B HBV, mutations C1165T, A1762T and G1764A, T2712C/A/G, and A/T2525C were associated with HCC. HCC-related mutations T31C, T53C, and A1499G were associated with HBV subgenotype Ce, and mutations G1613A, G1899A, T2170C/G, and T2441C were associated with HBV subgenotype Cs. Amino acid changes caused by these mutations were found in the X, envelope, and precore/core regions in association with HBV genotype B, Ce, and Cs, respectively. In conclusion, infections with different genotypes of HBV (B, Ce, and Cs) carry different genomic markers for HCC at different parts of the HBV genome. Different HBV genotypes may have different virologic mechanisms of hepatocarcinogenesis.  相似文献   

12.
13.
The X-protein of the hepatitis B virus (HBV) is essential for virus infection and contributes to the development of HBV-induced hepatocellular carcinoma (HCC), a disease which causes more than one million deaths each year. Here we describe the design of a novel PROTAC (proteolysis targeting chimeric molecule) capable of simultaneously inducing the degradation of the X-protein, and antagonizing its function. The PROTAC was constructed by fusing the N-terminal oligomerization and C-terminal instability domains of the X-protein to each other, and rendering them cell-permeable by the inclusion of a polyarginine cell-penetrating peptide (CPP). It was predicted that the oligomerization domain would bind the X-protein, and that the instability domain would cause the X-protein to be targeted for proteasomal degradation. Addition of the PROTAC to HepG2 liver cancer cells, engineered to express full-length and C-terminally truncated forms of the X-protein, resulted in the degradation of both forms of the X-protein. A cell-permeable stand-alone form of the oligomerization domain was taken up by HepG2 cells, and acted as a dominant-negative inhibitor, causing inhibition of X-protein-induced apoptosis. In summary, the PROTAC described here induces the degradation of the X-protein, and antagonizes its function, and warrants investigation in a preclinical study for its ability to prevent or treat HBV infection and/or the development of HCC.  相似文献   

14.
肝癌细胞的恶性转化与感染乙型肝炎病毒(hepatitis B virus, HBV)和丙型肝炎病毒密切相关.但是HBV没有直接诱导肝癌发生的生物学功能,HBV可通过其x蛋白(HBx)激活生长信号,促进癌基因的表达从而诱导肝细胞恶性转化.在肝细胞恶性转化过程的早期,甲胎蛋白(alpha fetoprotein, AFP)基因被激活,而AFP能激发PI3K/AKT信号传递,由于PI3K/AKT信号途径具有促进细胞恶性转化的作用,所以AFP的表达在HBV诱导肝细胞恶性转化过程发挥关键性作用.本文就HBV通过优先驱动AFP表达促进肝癌细胞增殖和自然重编程从而诱发肝癌的分子机制进行阐述,对认识AFP在HBV相关性肝癌发生过程中的作用以及预警肝癌发生有重要的科学意义.  相似文献   

15.

Background

A number of case-control patient studies have been conducted to investigate the association between diabetes mellitus (DM) and hepatocellular carcinoma (HCC). Despite some controversial reports, it has been suggested that DM is associated with HCC. The previous studies on this subject vary in the selection of populations, sample sizes, methodology, and analysis results. Therefore, it is necessary to further delineate the involvement of DM, together with other related risk factors, in HCC with large sample size and strict analysis methodology.

Methods

We conducted a hospital-based retrospective case-control study at Perking Union Medical College Hospital, China. A total of 1,568 patients with liver diseases were enrolled in the statistical study to evaluate the association of DM and other risk factors with HCC. Among these patients, 716 of them were diagnosed with benign liver diseases, and 852 patients were diagnosed as HCC. We utilized binary logistic regression and stepwise logistic regression to investigate the associations among DM, hypertension, fatty liver, cirrhosis, gallstone, HBV infection, HCV infection, and HCC.

Results

Statistical analysis through the stepwise regression model indicated that the prevalence of DM, male gender, cirrhosis, HCV infection, or HBV infection is higher in the HCC patient group compared to the control group. However, the prevalence of gallstone is negatively associated with HCC cases. DM co-exists with HBV infection, male gender, and age in the HCC cases. Binary logistic regression analysis suggested that DM may synergize with HBV infection in HCC development.

Conclusion

DM is strongly associated with the increased risk of HCC regardless of the prevalence of HBV infection, HCV infection, cirrhosis, male gender, and age. However, the synergistic interaction between DM and HBV in HCC occurrence is significant. Therefore, DM patients with HBV infection represent a very high HCC risk population and should be considered for HCC close surveillance program.  相似文献   

16.
The Fc Receptor-like Y (FcRY) molecule is preferentially expressed by B lymphocytes and has recently been considered as a potential therapeutic target for B cell malignancies. In this study, we investigated the correlation between FcRY expression profile, B lymphocytes population and different HBV infection disease status. The FcRY expression level on B lymphocytes and the number of B lymphocytes population from peripheral blood in 27 healthy controls (HC) and 65 patients with HBV-induced diseases, including chronic hepatitis B (CHB), liver cirrhosis (LC) and hepatocellular carcinoma (HCC), were analyzed using quantitative real-time PCR and flow cytometry. The results showed the level of FcRY expression and frequency of germinal center (GC) B lymphocytes from peripheral blood were significantly correlated with the HBV-related disease status, which was highest in HCC and LC patients, lowest in healthy donors, and in the middle in patients with CHB. Our study indicates that there is a significant correlation between FcRY expression profile, B lymphocytes population and HBV-induced diseases. However, the roles of FcRY and B lymphocytes in HBV-induced diseases are unclear and need further investigation.  相似文献   

17.
Elevated expression of heat shock protein gp96 in hepatitis B virus (HBV)-infected patients is positively correlated with the progress of HBV-induced diseases, but little is known regarding the molecular mechanism of virus-induced gp96 expression and its impact on HBV infection. In this study, up-regulation of gp96 by HBV replication was confirmed both in vitro and in vivo. Among HBV components, HBV x protein (HBx) was found to increase gp96 promoter activity and enhance gp96 expression by using a luciferase reporter system, and western blot analysis. Further, we found that HBx-mediated regulation of gp96 expression requires a NF-κB cis-regulatory element on the gp96 promoter, and chromatin immunoprecipitation results demonstrated that HBx promotes the binding of NF-κB to the gp96 promoter. Significantly, both gain- and loss-of-function studies showed that gp96 enhances HBV production in HBV-transfected cells and a mouse model based on hydrodynamic transfection. Moreover, up-regulated gp96 expression was observed in HBV-infected patients, and gp96 levels were correlated with serum viral loads. Thus, our work demonstrates a positive feedback regulatory pathway involving gp96 and HBV, which may contribute to persistent HBV infection. Our data also indicate that modulation of gp96 function may represent a novel strategy for the intervention of HBV infection.  相似文献   

18.
The development of hepatocellular carcinoma (HCC) can be considered as an end-stage outcome of chronic hepatitis B virus (HBV) infection. Early prognostic markers are needed to allow effective treatments and prevent HCC from developing. Proteomics analysis has been used to identify markers from clinical samples from HCC patients. This approach can be further improved by identifying early biomarkers before the onset of HCC. One way would be to use the cell-based HBV replication system, which is reflective of the early stage of virus infection and thus secreted proteins identified at this stage may have relevance in HCC prognosis. In this review, we focus the discussion on the current status of proteomics analysis of cellular proteins and HCC biomarker identification, with a special highlight on the potential of the cell-based HBV replication system for the identification of prognostic HCC biomarkers.  相似文献   

19.
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection in vitro and in vivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号