首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complex and heterogeneous microflora performs sugar and lactic acid fermentations in food products. Depending on the fermentable food matrix (dairy, meat, vegetable etc.) as well as on the species composition of the microbiota, specific combinations of molecules are produced that confer unique flavor, texture, and taste to each product. Bacterial populations within such "fermented food microbiota" are often of environmental origin, they persist alive in foods ready for consumption, eventually reaching the gastro-intestinal tract where they can interact with the resident gut microbiota of the host. Although this interaction is mostly of transient nature, it can greatly contribute to human health, as several species within the food microbiota also display probiotic properties. Such an interplay between food and gut microbiota underlines the importance of the microbiological quality of fermented foods, as the crowded environment of the gut is also an ideal site for genetic exchanges among bacteria. Selection and spreading of antibiotic resistance genes in foodborne bacteria has gained increasing interest in the past decade, especially in light of the potential transferability of antibiotic resistance determinants to opportunistic pathogens, natural inhabitants of the human gut but capable of acquiring virulence in immunocompromised individuals. This review aims at describing major findings and future prospects in the field, especially after the use of antibiotics as growth promoters was totally banned in Europe, with special emphasis on the application of genomic technologies to improve quality and safety of fermented foods.  相似文献   

2.
Propamocarb (PM) is a pesticide that is widely used to protect cucumbers and other plants from downy mildew.Recently,some studies indicated that PM exposure had potential toxic effects in animals.In this study,adult male zebrafish were exposed to 100 and 1000 μg/l PM for 7 days to assess its effects on metabolism and the gut microbiota.We observed a significant decrease in triglyceride (TG) in the livers of zebrafish that were exposed to 1000 μg/l PM for 7 days.At the same time,some genes related to glycolysis and lipid metabolism in the livers of zebrafish,including hexokinase-1 (HK1),pyruvate kinase (PK),acyi-CoA oxidase (Aco),peroxisome proliferator activated receptor alpha (Ppar-α),apolipoprotein A-Ⅳ-like (Apo),Acetyl CoA carboxylase-1 (Acc1),diacylglycerol acyltransferase (Dgat),and fatty acid synthase (Fas),were also decreased significantly after PM exposure.Based on GC-MS metabolomics analysis,a total of 48 metabolites changed significantly in the 1000 μg/l PM treatment group in comparison with the control group.These altered metabolites were mainly associated with the glycolysis,amino acid metabolism,and lipid metabolism pathways.Interestingly,we further found that the 1000 μg/l PM treatment group also showed significant elevations in Proteobacteria,Bacteroidetes,and Firmicutes at the phylum level.Sequencing of the 16S rRNA gene in the V3-V4 region also showed a significant change in the abundance and diversity of the gut microbiota in the 1000 μg/l PM treatment group.Our results indicated that exposure to PM for a short time could induce hepatic metabolic disorders and gut microbiota dysbiosis in adult male zebrafish.  相似文献   

3.
Here we report the effects of starvation and insect age on the diversity of gut microbiota of adult desert locusts, Schistocerca gregaria, using denaturing gradient gel electrophoretic (DGGE) analysis of bacterial 16S rRNA genes. Sequencing of excised DGGE bands revealed the presence of only one potentially novel uncultured member of the Gammaproteobacteria in the guts of fed, starved, young or old locusts. Most of the 16S rRNA gene sequences were closely related to known cultured bacterial species. DGGE profiles suggested that bacterial diversity increased with insect age and did not provide evidence for a characteristic locust gut bacterial community. Starved insects are often more prone to disease, probably because they compromise on immune defence. However, the increased diversity of Gammaproteobacteria in starved locusts shown here may improve defence against enteric threats because of the role of gut bacteria in colonization resistance.  相似文献   

4.
The influence of microgravity on the susceptibility of soybean roots to Phytophthora sojae was studied during the Space Shuttle Mission STS-87. Seedlings of soybean cultivar Williams 82 grown in spaceflight or at unit gravity were untreated or inoculated with the soybean root rot pathogen P. sojae. At 3, 6 and 7 d after launch while still in microgravity, seedlings were photographed and then fixed for subsequent microscopic analysis. Post-landing analysis of the seedlings revealed that at harvest day 7 the length of untreated roots did not differ between flight and ground samples. However, the flight-grown roots infected with P. sojae showed more disease symptoms (percentage of brown and macerated areas) and the root tissues were more extensively colonized relative to the ground controls exposed to the fungus. Ethylene levels were higher in spaceflight when compared to ground samples. These data suggest that soybean seedlings grown in microgravity are more susceptible to colonization by a fungal pathogen relative to ground controls.  相似文献   

5.
Glial fibrillary acidic protein (GFAP) is a commonly used marker to identify enteric glia in the mammalian gut. Little is however known about enteric glia in other vertebrates. The aim of the present study was to examine the distribution of GFAP immunoreactivity in adult and developing fish. In adult shorthorn sculpin (Myoxocephalus scorpius) and zebrafish (Danio rerio), GFAP immunoreactivity was seen in the myenteric plexus in all regions of the gut. Co-staining for the neuronal markers Hu C/D and acetylated tubulin showed that GFAP immunoreactivity was not associated with nerves. GFAP immunoreactivity was predominantly seen in processes with few glial cell bodies being demonstrated in adult fish. GFAP immunoreactivity was also found in the gut in larval zebrafish from 3 days post-fertilisation, i.e. at approximately the same time that differentiated enteric nerve cells first occur. Immunoreactivity was most prominent in areas with no or a low density of Hu-immunoreactive nerve cell bodies, indicating that the developing glia follows a different pattern from that of enteric neurons. The results suggest that GFAP can be used as a marker for enteric glia in fish, as in birds and mammals. The distribution of GFAP immunoreactivity implies that enteric glia are widespread in the fish gastrointestinal tract. Glia and neurons diverge early during development of the gastrointestinal tract.  相似文献   

6.
This article is part of a Special Issue "Neuroendocrine-Immune Axis in Health and Disease." The body is colonized by highly complex and genetically diverse communities of microbes, the majority of which reside within the intestines in largely stable but dynamically interactive climax communities. These microbes, referred to as the microbiota, have many functions that enhance the health of the host, and it is now recognized that the microbiota influence both mucosal and systemic immunity. The studies outlined in this review demonstrate that the microbiota are also involved in stressor-induced immunomodulation. Exposure to different types of stressors, including both physical and psychological stressors, changes the composition of the intestinal microbiota. The altered profile increases susceptibility to an enteric pathogen, i.e., Citrobacter rodentium, upon oral challenge, but is also associated with stressor-induced increases in innate immune activity. Studies using germfree mice, as well as antibiotic-treated mice, provide further evidence that the microbiota contribute to stressor-induced immunomodulation; stressor-induced increases in splenic macrophage microbicidal activity fail to occur in mice with no, or reduced, intestinal microbiota. While the mechanisms by which microbiota can impact mucosal immunity have been studied, how the microbiota impact systemic immune responses is not clear. A mechanism is proposed in which stressor-induced degranulation of mucosal mast cells increases the permeability of the intestines. This increased permeability would allow intact bacteria and/or bacterial products (like peptidoglycan) to translocate from the lumen of the intestines to the interior of the body, where they directly, or indirectly, prime the innate immune system for enhanced reactivity to antigenic stimulation.  相似文献   

7.
8.
9.
Levels of UVB radiation (UVB) and mean temperatures have increased substantially over recent decades in many regions of the world. Both stressors independently can compromise immune function, disease resistance and fitness in fish. The impact of UVB can also be exacerbated by interactions with environmental temperatures. In this paper, we test the hypothesis that UVB and temperature act synergistically to influence patterns of energy consumption and susceptibility to disease. We exposed mosquitofish, Gambusia holbrooki, to a factorial design of low and high UVB levels and low (18°C) and high (25°C) temperatures. The combination of high UVB and high temperature interacted synergistically to suppress metabolism and exacerbate infection intensity by the fish pathogen whitespot (Ichtyhophthirius multifiliis). Given the rapid changes in the thermal environment globally, the interaction between UVB and temperatures on energy use and disease resistance could pose significant problems for aquatic animal health in the context of both pre-existing and emerging diseases.  相似文献   

10.
Sepsis is common in liver cirrhosis, and animal studies have shown the gut to be the principal source of infection, through bacterial overgrowth and translocation in the small bowel. A total of 33 patients were recruited into this study, 10 without cirrhosis and 23 with cirrhotic liver disease. Six distal duodenal biopsies were obtained and snap frozen for RNA and DNA extraction, or frozen for FISH. Peripheral venous bloods were obtained from 30 patients, including 17 chronic liver disease patients. Samples were analysed by real-time PCR, to assess total bacteria, bifidobacteria, bacteroides, enterobacteria, staphylococci, streptococci, lactobacilli, enterococci, Helicobacter pylori and moraxella, as well as TNF-α, IL-8 and IL-18. There was no evidence of bacterial overgrowth with respect to any of the individual bacterial groups, with the exception of enterococci, which were present in higher numbers in cirrhotic patients (P?=?0.04). There were no significant differences in any of the cytokines compared to the controls. The small intestinal mucosal microbiota in cirrhotic patients was qualitatively and quantitatively normal, and this shifts the focus of disease aetiology to factors that reduce gut integrity, failure of mechanisms to remove translocating bacteria, or the large bowel as the source of sepsis.  相似文献   

11.
12.
Khan  Israr  Wei  Junshu  Li  Anping  Liu  Zhirong  Yang  Pingrong  Jing  Yaping  Chen  Xinjun  Zhao  Tang  Bai  Yanrui  Zha  Lajia  Li  Chenhui  Ullah  Naeem  Che  Tuanjie  Zhang  Chunjiang 《International microbiology》2022,25(3):587-603
International Microbiology - Gut microbiota has become a new therapeutic target in the treatment of inflammatory Bowel Disease (IBD). Probiotics are known for their beneficial effects and have...  相似文献   

13.
Unravelling the mechanisms of how antibiotics influence growth performance through changes in gut microbiota can lead to the identification of highly productive microbiota in animal production. Here we investigated the effect of zinc bacitracin and avilamycin on growth performance and caecal microbiota in chickens and analysed associations between individual bacteria and growth performance. Two trials were undertaken; each used 96 individually caged 15-day-old Cobb broilers. Trial 1 had a control group (n = 48) and a zinc bacitracin (50 ppm) treatment group (n = 48). Trial 2 had a control group (n = 48) and an avilamycin (15 ppm) treatment group (n = 48). Chicken growth performance was evaluated over a 10-day period, and caecal microbiota was characterised by sequencing of bacterial 16S rRNA gene amplicons. Avilamycin produced no effect on growth performance and exhibited little significant disturbance of the microbiota structure. However, zinc bacitracin reduced the feed conversion ratio (FCR) in treated birds, changed the composition and increased the diversity of their caecal microbiota by reducing dominant species. Avilamycin only produced minor reductions in the abundance of two microbial taxa, whereas zinc bacitracin produced relatively large shifts in a number of taxa, primarily Lactobacillus species. Also, a number of phylotypes closely related to lactobacilli species were positively or negatively correlated with FCR values, suggesting contrasting effects of Lactobacillus spp. on chicken growth performance. By harnessing such bacteria, it may be possible to develop high-productivity strategies in poultry that rely on the use of probiotics and less on in-feed antibiotics.  相似文献   

14.
Rice sheath blight, caused by the necrotrophic fungus Rhizoctonia solani, is one of the most devastating and intractable diseases of rice, leading to a significant reduction in rice productivity worldwide. In this article, in order to examine sheath blight resistance, we report the generation of transgenic rice lines overexpressing the rice oxalate oxidase 4 (Osoxo4) gene in a green tissue‐specific manner which breaks down oxalic acid (OA), the pathogenesis factor secreted by R. solani. Transgenic plants showed higher enzyme activity of oxalate oxidase (OxO) than nontransgenic control plants, which was visualized by histochemical assays and sodium dodecylsulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE). Transgenic rice leaves were more tolerant than control rice leaves to exogenous OA. Transgenic plants showed a higher level of expression of other defence‐related genes in response to pathogen infection. More importantly, transgenic plants exhibited significantly enhanced durable resistance to R. solani. The overexpression of Osoxo4 in rice did not show any detrimental phenotypic or agronomic effect. Our findings indicate that rice OxO can be utilized effectively in plant genetic manipulation for sheath blight resistance, and possibly for resistance to other diseases caused by necrotrophic fungi, especially those that secrete OA. This is the first report of the expression of defence genes in rice in a green tissue‐specific manner for sheath blight resistance.  相似文献   

15.
The availability of fully sequenced bacterial genomes has revealed that many species known to synthesize the polyamine spermidine lack the spermidine biosynthetic enzymes S-adenosylmethionine decarboxylase and spermidine synthase. We found that such species possess orthologues of the sym-norspermidine biosynthetic enzymes carboxynorspermidine dehydrogenase and carboxynorspermidine decarboxylase. By deleting these genes in the food-borne pathogen Campylobacter jejuni, we found that the carboxynorspermidine decarboxylase orthologue is responsible for synthesizing spermidine and not sym-norspermidine in vivo. In polyamine auxotrophic gene deletion strains of C. jejuni, growth is highly compromised but can be restored by exogenous sym-homospermidine and to a lesser extent by sym-norspermidine. The alternative spermidine biosynthetic pathway is present in many bacterial phyla and is the dominant spermidine route in the human gut, stomach, and oral microbiomes, and it appears to have supplanted the S-adenosylmethionine decarboxylase/spermidine synthase pathway in the gut microbiota. Approximately half of the gut Firmicutes species appear to be polyamine auxotrophs, but all encode the potABCD spermidine/putrescine transporter. Orthologues encoding carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase are found clustered with an array of diverse putrescine biosynthetic genes in different bacterial genomes, consistent with a role in spermidine, rather than sym-norspermidine biosynthesis. Due to the pervasiveness of ε-proteobacteria in deep sea hydrothermal vents and to the ubiquity of the alternative spermidine biosynthetic pathway in that phylum, the carboxyspermidine route is also dominant in deep sea hydrothermal vents. The carboxyspermidine pathway for polyamine biosynthesis is found in diverse human pathogens, and this alternative spermidine biosynthetic route presents an attractive target for developing novel antimicrobial compounds.  相似文献   

16.
Two fish protein hydrolysates (FPH) were incorporated into four diets prepared for start-feeding sea bass larvae, at two different levels (10% and 19% of total ingredients): a commercial FPH, CPSP, in which the molecular mass of the main fraction of soluble peptides (51%) was between 500-2500 Da, and an experimental FPH obtained by acidic silage of sardine offal, SH, with a main portion of soluble peptides (54%) ranging from 200 to 500 Da. The diet with 10% of the commercial FPH gave the best results in terms of growth, survival and intestinal development, as evaluated by the early activity of digestive enzymes in the brush border membrane (alkaline phosphatase and aminopeptidase N). This was related to the low level of Vibrio spp. counted in the larvae of group C10. The high dose of FPH, especially in the experimental preparation rich in short peptides, seemed to favour the dominance of Vibrio sp. TYH3, which behaved opportunistically. The effect of the experimental FPH was ambiguous, since early larvae challenged with Vibrio anguillarum were more resistant to the pathogen, especially at high FPH dose (group S19). This might be due either to direct antagonism between V. anguillarum and Vibrio sp. TYH3, or to the stimulation of the immune response in the larvae. These results indicate that different molecular weight fractions and concentrations of feed-soluble peptides may affect the growth performance and immunological status of sea bass larvae. Consequently, a low dose of commercial FPH seems advisable, both for larval development and for the bacterial environment, although further research is required to determine and characterize peptide fractions that may have a beneficial effect on growth and immune response, and to determine their optimal inclusion levels in diets for sea bass larvae.  相似文献   

17.
18.
Growth regulation by insulin-like growth factor-I in fish   总被引:21,自引:0,他引:21  
Insulin-like growth factor-I (IGF-I) is a mitogenic polypeptide that plays an essential role in the regulation of development and somatic growth of vertebrates, mainly by mediating growth hormone actions. It has clearly been established that the structure of IGF-I and its biological function has been highly conserved among vertebrates. In this paper, we review the recent developments in the molecular, biochemical, and physiological properties of IGF-I in fish.  相似文献   

19.
Liu J  Chen D  Yao Y  Yu B  Mao X  He J  Huang Z  Zheng P 《PloS one》2012,7(4):e34835
It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号