首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primordial germ cells in the mouse embryo during gastrulation   总被引:45,自引:0,他引:45  
With the aid of a whole-mount technique, we have detected a small cluster of alkaline phosphatase (ALP)-positive cells in whole mounts of mid-primitive-streak-stage embryos, 7-7 1/4 days post coitum (dpc). Within the cluster, about 8 cells contain a small cytoplasmic spot, intensely stained for ALP activity and possibly associated with an active Golgi complex. The cluster lies just posterior to the definitive primitive streak in the extraembryonic mesoderm, separated from the embryo by the amniotic fold. Towards the end of gastrulation, the number of cells containing the ALP-positive spot rises to between 50 and 80. Thereafter the number of cells in the extraembryonic cluster declines, and similar cells start to be seen in the mesoderm of the primitive streak and then in the endoderm. At 8 dpc, about 125 ALP-stained cells are found, mainly in the hindgut endoderm and also at the base of the allantois, their appearance and location at this stage agreeing closely with previous reports on primordial germ cells (PGCs). Embryos from which the cluster area has been removed at the 7-day stage are devoid of PGCs after culture for 48 h, whereas the excised tissue is rich in PGCs. We argue that the cells in the cluster are indeed primordial germ cells, at a stage significantly earlier than any reported previously. This would indicate that the PGC lineage in the mouse is set aside at least as early as 7 dpc, possibly as one of the first 'mesodermal' cell types to emerge, and that its differentiation, as expressed by ALP activity, is gradual.  相似文献   

2.
Orthotopic grafts of [3H]thymidine-labelled cells have been used to demonstrate differences in the normal fate of tissue located adjacent to and in different regions of the primitive streak of 8th day mouse embryos developing in vitro. The posterior streak produces predominantly extraembryonic mesoderm, while the middle portion gives rise to lateral mesoderm and the anterior region generates mostly paraxial mesoderm, gut and notochord. Embryonic ectoderm adjacent to the anterior part of the streak contributes mainly to paraxial mesoderm and neurectoderm. This pattern of colonization is similar to the fate map constructed in primitive-streak-stage chick embryos. Similar grafts between early-somite-stage (9th day) embryos have established that the older primitive streak continues to generate embryonic mesoderm and endoderm, but ceases to make a substantial contribution to extraembryonic mesoderm. Orthotopic grafts and specific labelling of ectodermal cells with wheat germ agglutinin conjugated to colloidal gold (WGA-Au) have been used to analyse the recruitment of cells into the paraxial mesoderm of 8th and 9th day embryos. The continuous addition of primitive-streak-derived cells to the paraxial mesoderm is confirmed and the distribution of labelled cells along the craniocaudal sequence of somites is consistent with some cell mixing occurring within the presomitic mesoderm.  相似文献   

3.
Although much remains unknown about how the embryonic axis is laid down in the mouse, it is now clear that reciprocal interactions between the extraembryonic and embryonic lineages establish and reinforce patterning of the embryo. At early post-implantation stages, the extraembryonic ectoderm appears to impart proximal-posterior identity to the adjacent proximal epiblast, whereas the distal visceral endoderm signals to the underlying epiblast to restrict posterior identity as it moves anteriorward. At gastrulation, the visceral endoderm is necessary for specifying anterior primitive streak derivatives, which, in turn, pattern the anterior epiblast. Polarity of these extraembryonic tissues can be traced back to the blastocyst stage, where asymmetry has been linked to the point of sperm entry at fertilization.  相似文献   

4.
In vitro studies have demonstrated the involvement of Src kinases in several aspects of cell scattering, including cell dissociation and motility. We have therefore sought to explore their functions in the context of the whole organism. Loss-of-function microinjection studies indicate that the ubiquitous Src, Fyn, and Yes tyrosine kinases are specifically implicated in Xenopus gastrulation movements. Injection of mRNAs coding for dominant negative forms of the ubiquitous members of the Src family, namely Fyn, Src, and Yes, perturbs gastrulation movements, resulting in the inability to close the blastopore. Injection of mRNA coding for Csk, a natural inhibitor of Src kinase activity, produces the same phenotypic alterations. The ubiquitous Src kinases have redundant functions in gastrulation movements since overexpression of one member of the family can compensate for the inhibition of another. Interfering mutants of the Src family also inhibit activin-induced morphogenetic movements of animal cap explants isolated from injected embryos. In contrast, these mutants do not interfere with mesoderm induction, as inferred from the presence of mesoderm derivatives and from the expression of early mesodermal markers in injected embryos. In addition, Src kinase activity measured by an in vitro kinase assay is elevated in gastrulating embryos and in FGF- and activin-treated animal caps, confirming the implication of Src enzymatic activity during gastrulation. Altogether, our results demonstrate that Src kinases are essential components of the machinery that drives gastrulation movements independent of mesoderm induction and suggest that Src activity is primarily implicated in cellular movements that take place during the process of cell intercalation.  相似文献   

5.
Early sequential expression of mouse Hox genes is essential for their later function. Analysis of the relationship between early Hox gene expression and the laying down of anterior to posterior structures during and after gastrulation is therefore crucial for understanding the ontogenesis of Hox-mediated axial patterning. Using explants from gastrulation stage embryos, we show that the ability to express 3' and 5' Hox genes develops sequentially in the primitive streak region, from posterior to anterior as the streak extends, about 12 hours earlier than overt Hox expression. The ability to express autonomously the earliest Hox gene, Hoxb1, is present in the posterior streak region at the onset of gastrulation, but not in the anterior region at this stage. However, the posterior region can induce Hoxb1 expression in these anterior region cells. We conclude that tissues are primed to express Hox genes early in gastrulation, concomitant with primitive streak formation and extension, and that Hox gene inducibility is transferred by cell to cell signalling. Axial structures that will later express Hox genes are generated in the node region in the period that Hox expression domains arrive there and continue to spread rostrally. However, lineage analysis showed that definitive Hox codes are not fixed at the node, but must be acquired later and anterior to the node in the neurectoderm, and independently in the mesoderm. We conclude that the rostral progression of Hox gene expression must be modulated by gene regulatory influences from early on in the posterior streak, until the time cells have acquired their stable positions along the axis well anterior to the node.  相似文献   

6.
7.
8.

Background  

To date, the earliest stage at which the orientation of the anterior-posterior axis in the mouse embryo is distinguishable by asymmetric gene expression is shortly after E5.5. At E5.5, prospective anterior markers are expressed at the distal tip of the embryo, whereas prospective posterior markers are expressed more proximally, close to the boundary with the extraembryonic region.  相似文献   

9.
Induction of gastrulation in the chick embryo   总被引:1,自引:0,他引:1  
Interaction between the epiblast and the primary hypoblast in chick blastula results in induction of the primitive streak (PS) in the epiblast. Alpha-amanitin, a specific inhibitor of poly A-containing RNA synthesis, inhibits formation of the definitive PS. This inhibition is associated with qualitative changes in the pattern of protein synthesis in the hypoblast but not in the epiblast. The protein pattern of the component areas of the epiblast shows increase in some polypeptides after treatment with alpha-amanitin. By contrast, alpha-amanitin resulted in a decrease in synthesis of several polypeptides, which are either undetectable or weakly present in the hypoblast. The alpha-amanitin-sensitive translational products of the embryonic genome that are observed in the hypoblast may have specific functions in the control of PS induction and stabilization.  相似文献   

10.
PTEN抑制胚胎原肠胚形成期EMT的过程   总被引:1,自引:0,他引:1  
Li Y  Wang XY  Wang LJ  Xu T  Lu XY  Cai DQ  Geng JG  Yang XS 《遗传》2011,33(6):613-619
PTEN(Phosphatase and tensin homolog)是一种重要的抑癌基因,具有非常广泛的生物学活性,例如在细胞的生长发育、迁移、凋亡和信号传导等均发挥重要作用。PTEN基因表达始于在胚胎早期的上胚层,而后主要出现在神经外胚层和胚胎中胚层结构,表明PTEN可能参与胚胎早期发育过程的细胞迁移、增殖和分化。文章主要应用在体改变早期胚胎PTEN的表达水平来观察其对上胚层至中胚层细胞转换—EMT(Epithe-lial-mesenchymal transition)的作用。首先,原位杂交结果提示,内源性PTEN表达在原条以及之后的中胚层细胞结构如体节等。在体PTEN转染实验,体外培养至HH3期的鸡胚胎,转染Wt PTEN-GFP或移植Wt PTEN-GFP原条组织至未转染的同时期的宿主胚胎相同部位后,观察到PTEN转染细胞大都由上胚层迁移至原条并滞留于原条,不再参与中胚层细胞形成。移植实验也得到相似结果,发现在Wt PTEN-GFP阳性原条组织移植后很少细胞迁移出原条。另外在原肠胚期PTEN siRNA降调胚胎一侧PTEN基因后,降调侧中胚层细胞数明显少于正常侧。上述研究结果均提示PTEN基因在胚胎原肠胚期三胚层形成过程中可能具有抑制EMT的作用。  相似文献   

11.
绵羊胚胎附植分子调控研究进展   总被引:2,自引:0,他引:2  
胚胎附植是哺乳动物复杂的生殖生理过程,是妊娠建立的标志和首要环节。早期胚胎发育、母体妊娠识别、胚胎附植和妊娠维持都严格依赖于孕体和中间的信号联系。大量研究证明,在绵羊胚胎附植过程中,来源于胚胎、母体子宫及宫外组织的多种生殖激素、黏附分子、细胞外基质、细胞活素物质和生长因子通过极其精密的协调共同参与和维持了孕体的发育、子宫内膜的重塑、分泌功能和子宫生长。综述了近年来绵羊胚胎附植的相关分子调控机制的最新研究进展,对胚胎附植分子调控信号的掌握将有助于诊断和确定那些引起妊娠失败的原因,为提高家畜和人类妊娠率提供参考。  相似文献   

12.
Laminins are components of all basement membranes and have well demonstrated roles in diverse developmental processes, from the peri-implantation period onwards. Laminin 1 (alpha1beta1gamma1) is a major laminin found at early stages of embryogenesis in both embryonic and extraembryonic basement membranes. The laminin gamma1 chain has been shown by targeted mutation to be required for endodermal differentiation and formation of basement membranes; Lamc1(-/-) embryos die within a day of implantation. We report the generation of mice lacking laminin alpha1 and laminin beta1, the remaining two laminin 1 chains. Mutagenic insertions in both Lama1 and Lamb1 were obtained in a secretory gene trap screen. Lamb1(-/-) embryos are similar to Lamc1(-/-) embryos in that they lack basement membranes and do not survive beyond embryonic day (E) 5.5. However, in Lama1(-/-) embryos, the embryonic basement membrane forms, the embryonic ectoderm cavitates and the parietal endoderm differentiates, apparently because laminin 10 (alpha5beta1gamma1) partially compensates for the absent laminin 1. However, such compensation did not occur for Reichert's membrane, which was absent, and the embryos died by E7. Overexpression of laminin alpha5 from a transgene improved the phenotype of Lama1(-/-) embryos to the point that they initiated gastrulation, but this overexpression did not rescue Reichert's membrane, and trophoblast cells did not form blood sinuses. These data suggest that both the molecular composition and the integrity of basement membranes are crucial for early developmental events.  相似文献   

13.
14.
BACKGROUND: When the anterior-posterior axis of the mouse embryo becomes explicit at gastrulation, it is almost perpendicular to the long uterine axis. This led to the belief that the uterus could play a key role in positioning this future body axis. RESULTS: Here, we demonstrate that when the anterior-posterior axis first emerges it does not respect the axes of the uterus but, rather, the morphology of the embryo. Unexpectedly, the emerging anterior-posterior axis is initially aligned not with the long, but the short axis of the embryo. Then whether the embryo develops in vitro or in utero, the anterior-posterior axis becomes aligned with the long axis of embryo just prior to gastrulation. Of three mechanisms that could account for this apparent shift in anterior-posterior axis orientation-cell migration, spatial change of gene expression, or change in embryo shape-lineage tracing studies favor a shape change accompanied by restriction of the expression domain of anterior markers. This property of the embryo must be modulated by interactions with the uterus as ultimately the anterior-posterior and long axes of the embryo align with the left-right uterine axis. CONCLUSIONS: The emerging anterior-posterior axis relates to embryo morphology rather than that of the uterus. The apparent shift in its orientation to align with the long embryonic axis and with the uterus is associated with a change in embryo shape and a refinement of anterior gene expression pattern. This suggests an interdependence between anterior-posterior gene expression, the shape of the embryo, and the uterus.  相似文献   

15.
During mouse gastrulation, endoderm cells of the dorsal foregut are recruited ahead of the ventral foregut and move to the anterior region of the embryo via different routes. Precursors of the anterior-most part of the foregut and those of the mid- and hind-gut are allocated to the endoderm of the mid-streak-stage embryo, whereas the precursors of the rest of the foregut are recruited at later stages of gastrulation. Loss of Mixl1 function results in reduced recruitment of the definitive endoderm, and causes cells in the endoderm to remain stationary during gastrulation. The observation that the endoderm cells are inherently unable to move despite the expansion of the mesoderm in the Mixl1-null mutant suggests that the movement of the endoderm and the mesoderm is driven independently of one another.  相似文献   

16.
The preimplantation development of the mammalian embryo encompasses a series of critical events: the transition from oocyte to embryo, the first cell divisions, the establishment of cellular contacts, the first lineage differentiation-all the first subtle steps toward a future body plan. Here, we use microarrays to explore gene activity during preimplantation development. We reveal robust and dynamic patterns of stage-specific gene activity that fall into two major phases, one up to the 2-cell stage (oocyte-to-embryo transition) and one after the 4-cell stage (cellular differentiation). The mouse oocyte and early embryo express components of multiple signaling pathways including those downstream of Wnt, BMP, and Notch, indicating that conserved regulators of cell fate and pattern formation are likely to function at the earliest embryonic stages. Overall, these data provide a detailed temporal profile of gene expression that reveals the richness of signaling processes in early mammalian development.  相似文献   

17.
The prospective fate of cells in the primitive streak was examined at early, mid and late stages of mouse gastrula development to determine the order of allocation of primitive streak cells to the mesoderm of the extraembryonic membranes and to the fetal tissues. At the early-streak stage, primitive streak cells contribute predominantly to tissues of the extraembryonic mesoderm as previously found. However, a surprising observation is that the erythropoietic precursors of the yolk sac emerge earlier than the bulk of the vitelline endothelium, which is formed continuously throughout gastrula development. This may suggest that the erythropoietic and the endothelial cell lineages may arise independently of one another. Furthermore, the extraembryonic mesoderm that is localized to the anterior and chorionic side of the yolk sac is recruited ahead of that destined for the posterior and amnionic side. For the mesodermal derivatives in the embryo, those destined for the rostral structures such as heart and forebrain mesoderm ingress through the primitive streak early during a narrow window of development. They are then followed by those for the rest of the cranial mesoderm and lastly the paraxial and lateral mesoderm of the trunk. Results of this study, which represent snapshots of the types of precursor cells in the primitive streak, have provided a better delineation of the timing of allocation of the various mesodermal lineages to specific compartments in the extraembryonic membranes and different locations in the embryonic anteroposterior axis.  相似文献   

18.
Autophagy is important for cell renewing for its contribution to the degradation of bulk cytoplasm, long-lived proteins, and entire organelles and its role in embryonic development is largely unknown. In our study, we investigated the function of autophagy in gastrulation of the chick embryo using both in vivo and in vitro approaches, especially in the EMT process, and we found that autophagy gene Atg7 was expressed on the apical side of the ectoderm and endoderm. Over-expression of Atg7 could enhance the expression of Atg8 and the E-cadherin, the latter of which is a crucial marker of the EMT process. We also found that the disturbance of autophagy could retard the development of chick embryos in HH4 with shorter primitive steak than that in the control group, which is a newly formed structure during EMT process. So we assumed that autophagy could affect EMT process by adhesion molecule expression. Moreover, more molecules, such as slug, chordin, shh et., which were all involved in EMT process, were detected to address the mechanism of this phenomena. We established that the inhibition of autophagy could cause developmental delay by affecting EMT process in gastrulation of chick embryos.  相似文献   

19.
The hypothesis suggesting that the blastocoele is able to form only at a definite nucleocytoplasmic ratio was tested. We compared the development of preimplantation mouse embryos under different conditions. The results demonstrated that the start of cavitation is not dependent on the number of cell divisions. Thus, a definite nucleocytoplasmic ratio is not required for blastocoele formation to start. Our studies on embryos with microsurgically altered cytoplasm content provided evidence for the following biological clock mechanism: a change in the cell program of morphogenesis needs definite concentration of the products of a previous genetic program.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号