首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfolobus species belong to the best-studied archaeal organisms but have lacked powerful genetic methods. Recently, there has been considerable progress in the field of Sulfolobus genetics. Urgently needed basic genetic tools, such as targeted gene knockout techniques and shuttle vectors are being developed at an increasing pace. For S. solfataricus knockout systems as well as different shuttle vectors are available. For the genetically more stable S. acidocaldarius shuttle vectors have been recently developed. In this review we summarize the currently available genetic tools and methods for the genus Sulfolobus. Different transformation protocols are discussed, as well as all so far developed knockout systems and Sulfolobus-Escherichia coli shuttle vectors are summarized. Special emphasis is put on the important vector components, i.e., selectable markers and Sulfolobus replicons. Additionally, the information gathered on different Sulfolobus strains with respect to their use as recipient strains is reviewed. The advantages and disadvantages of the different systems are discussed and aims for further improvement of genetic systems are identified.  相似文献   

2.
Viruses of the extremely thermophilic archaeon Sulfolobus   总被引:5,自引:0,他引:5  
Viruses of Sulfolobus are highly unusual in their morphology, and genome structure and sequence. Certain characteristics of the replication strategies of these viruses and the virus-host interactions suggest relationships with eukaryal and bacterial viruses, and the primeval existence of common ancestors. Moreover, studying these viruses led to the discovery of archaeal promoters and has provided tools for the development of the molecular genetics of these organisms. The Sulfolobus viruses contain unique regulatory features and structures that undoubtedly hold surprises for researchers in the future.  相似文献   

3.
To meet the increasing demand of linking sequence information to gene function in vertebrate models, genetic modifications must be introduced and their effects analyzed in an easy, controlled, and scalable manner. In the mouse, only about 10% (estimate) of all genes have been knocked out, despite continuous methodologic improvement and extensive effort. Moreover, a large proportion of inactivated genes exhibit no obvious phenotypic alterations. Thus, in order to facilitate analysis of gene function, new genetic tools and strategies are currently under development in these model organisms. Loss of function and gain of function mutagenesis screens based on transposable elements have numerous advantages because they can be applied in vivo and are therefore phenotype driven, and molecular analysis of the mutations is straightforward. At present, laboratory harnessing of transposable elements is more extensive in invertebrate models, mostly because of their earlier discovery in these organisms. Transposons have already been found to facilitate functional genetics research greatly in lower metazoan models, and have been applied most comprehensively in Drosophila. However, transposon based genetic strategies were recently established in vertebrates, and current progress in this field indicates that transposable elements will indeed serve as indispensable tools in the genetic toolkit for vertebrate models. In this review we provide an overview of transposon based genetic modification techniques used in higher and lower metazoan model organisms, and we highlight some of the important general considerations concerning genetic applications of transposon systems.  相似文献   

4.
Chaperonins are multisubunit double-ring complexes that mediate the folding of nascent proteins [1] [2]. In bacteria, chaperonins are homo-oligomeric and are composed of seven-membered rings. Eukaryotic and most archaeal chaperonin rings are eight-membered and exhibit varying degrees of hetero-oligomerism [3] [4]. We have cloned and sequenced seven new genes encoding chaperonin subunits from the crenarchaeotes Sulfolobus solfataricus, S. acidocaldarius, S. shibatae and Desulfurococcus mobilis. Although some archaeal genomes possess a single chaperonin gene, most have two. We describe a third chaperonin-encoding gene (TF55-gamma) from two Sulfolobus species; phylogenetic analyses indicate that the gene duplication producing TF55-gamma occurred within crenarchaeal evolution. The presence of TF55-gamma in Sulfolobus correlates with their unique nine-membered chaperonin rings. Duplicate genes (paralogs) for chaperonins within archaeal genomes very often resemble each other more than they resemble chaperonin genes from other archaea. Our phylogenetic analyses suggest multiple independent gene duplications - at least seven among the archaea examined. The persistence of paralogous genes for chaperonin subunits in multiple archaeal lineages may involve a process of co-evolution, where chaperonin subunit heterogeneity changes independently of selection on function.  相似文献   

5.
The tree of life is split into three main branches: eukaryotes, bacteria, and archaea. Our knowledge of eukaryotic and bacteria cell biology has been built on a foundation of studies in model organisms, using the complementary approaches of genetics and biochemistry. Archaea have led to some exciting discoveries in the field of biochemistry, but archaeal genetics has been slow to get off the ground, not least because these organisms inhabit some of the more inhospitable places on earth and are therefore believed to be difficult to culture. In fact, many species can be cultivated with relative ease and there has been tremendous progress in the development of genetic tools for both major archaeal phyla, the Euryarchaeota and the Crenarchaeota. There are several model organisms available for methanogens, halophiles, and thermophiles; in the latter group, there are genetic systems for Sulfolobales and Thermococcales. In this review, we present the advantages and disadvantages of working with each archaeal group, give an overview of their different genetic systems, and direct the neophyte archaeologist to the most appropriate model organism.  相似文献   

6.
The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re-annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.  相似文献   

7.
Uracil-DNA glycosylase activities in hyperthermophilic micro-organisms   总被引:1,自引:0,他引:1  
Abstract Hyperthermophiles exist in conditions which present an increased threat to the informational integrity of their DNA, particularly by hydrolytic damage. As in mesophilic organisms, specific activities must exist to restore and protect this template function of DNA. In this study we have demonstrated the presence of thermally stable uracil-DNA glycosylase activities in seven hyperthermophiles; one bacterial: Thermotoga maritima , and six archaeal: Sulfolobus solfataricus, Sulfolobus shibatae, Sulfolobus acidocaldarius, Thermococcus litoralis, Pyrococcus furiosus and Pyrobaculum islandicum . Uracil-DNA glycosylase inhibitor protein of the Bacillus subtilis bacteriophage PBS1 shows activity against all of these, suggesting a highly conserved tertiary structure between hyperthermophilic and mesophilic uracil-DNA glycosylases.  相似文献   

8.
Molecular chaperones are a diverse group of proteins that ensure proteome integrity by helping the proteins fold correctly and maintain their native state, thus preventing their misfolding and subsequent aggregation. The chaperone machinery of archaeal organisms has been thought to closely resemble that found in humans, at least in terms of constituent players. Very few studies have been ventured into system-level analysis of chaperones and their functioning in archaeal cells. In this study, we attempted such an analysis of chaperone-assisted protein folding in archaeal organisms through network approach using Picrophilus torridus as model system. The study revealed that DnaK protein of Hsp70 system acts as hub in protein-protein interaction network. However, DnaK protein was present only in a subset of archaeal organisms and absent from many archaea, especially members of Crenarchaeota phylum. Therefore, a similar network was created for another archaeal organism, Sulfolobus solfataricus, a member of Crenarchaeota. The chaperone network of S. solfataricus suggested that thermosomes played an integral part of hub proteins in archaeal organisms, where DnaK was absent. We further compared the chaperone network of archaea with that found in eukaryotic systems, by creating a similar network for Homo sapiens. In the human chaperone network, the UBC protein, a part of ubiquitination system, was the most important module, and interestingly, this system is known to be absent in archaeal organisms. Comprehensive comparison of these networks leads to several interesting conclusions regarding similarities and differences within archaeal chaperone machinery in comparison to humans.  相似文献   

9.
Examination of the sequence of a hypothetical gene with an unknown function included in the carotenogenic gene cluster in the genome of a thermoacidophilic archaeon Sulfolobus solfataricus led to the prediction that the gene encodes a novel-type lycopene beta-cyclase, whose N- and C-terminal halves are homologous to the subunits of the bacterial heterodimeric enzymes. The recombinant expression of the gene in lycopene-producing Escherichia coli resulted in the accumulation of beta-carotene in the cells, which verifies the function of the gene. Homologues of the archaeal lycopene beta-cyclase from various organisms such as bacteria, archaea, and fungi have been reported. Although their primary structures are clearly specific to the biological taxa, a phylogenetic analysis revealed the unexpected complicity of the evolutional route of these enzymes.  相似文献   

10.
The archaeal leuB gene encoding isopropylmalate dehydrogenase of Sulfolobus sp. strain 7 was cloned, sequenced, and expressed in Escherichia coli. The recombinant Sulfolobus sp. enzyme was extremely stable to heat. The substrate and coenzyme specificities of the archaeal enzyme resembled those of the bacterial counterparts. Sedimentation equilibrium analysis supported an earlier proposal that the archaeal enzyme is homotetrameric, although the corresponding enzymes studied so far have been reported to be dimeric. Phylogenetic analyses suggested that the archaeal enzyme is homologous to mitochondrial NAD-dependent isocitrate dehydrogenases (which are tetrameric or octameric) as well as to isopropylmalate dehydrogenases from other sources. These results suggested that the present enzyme is the most primitive among isopropylmalate dehydrogenases belonging in the decarboxylating dehydrogenase family.  相似文献   

11.
Members of the Archaea domain are extremely diverse in their adaptation to extreme environments, yet also widespread in "normal" habitats. Altogether, among the best characterized archaeal representatives all mechanisms of gene transfer such as transduction, conjugation, and transformation have been discovered, as briefly reviewed here. For some halophiles and mesophilic methanogens, usable genetic tools were developed for in vivo studies. However, on an individual basis no single organism has evolved into the "E. coli of Archaea" as far as genetics is concerned. Currently, and unfortunately, most of the genome sequences available are those of microorganisms which are either not amenable to gene transfer or not among the most promising candidates for genetic studies.  相似文献   

12.
Glycoside hydrolases form hyperthermophilic archaea are interesting model systems for the study of catalysis at high temperatures and, at the moment, their detailed enzymological characterization is the only approach to define their role in vivo. Family 29 of glycoside hydrolases classification groups α-l-fucosidases involved in a variety of biological events in Bacteria and Eukarya. In Archaea the first α-l-fucosidase was identified in Sulfolobus solfataricus as interrupted gene expressed by programmed −1 frameshifting. In this review, we describe the identification of the catalytic residues of the archaeal enzyme, by means of the chemical rescue strategy. The intrinsic stability of the hyperthermophilic enzyme allowed the use of this method, which resulted of general applicability for β and α glycoside hydrolases. In addition, the presence in the active site of the archaeal enzyme of a triad of catalytic residues is a rather uncommon feature among the glycoside hydrolases and suggested that in family 29 slightly different catalytic machineries coexist.  相似文献   

13.
Much of the current information about the archaeal cell cycle has been generated through studies of the genus Sulfolobus. The overall organization of the cell cycle in these species is well understood, and information about the regulatory principles that govern cell cycle progression is rapidly accumulating. Exciting progress regarding the control and molecular details of the chromosome replication process is evident, and the first insights into the elusive crenarchaeal mitosis and cytokinesis machineries are within reach.  相似文献   

14.
Comparative analysis of ribonuclease P RNA structure in Archaea.   总被引:11,自引:1,他引:10       下载免费PDF全文
Although the structure of the catalytic RNA component of ribonuclease P has been well characterized in Bacteria, it has been little studied in other organisms, such as the Archaea. We have determined the sequences encoding RNase P RNA in eight euryarchaeal species: Halococcus morrhuae, Natronobacterium gregoryi, Halobacterium cutirubrum, Halobacteriurn trapanicum, Methanobacterium thermoautotrophicum strains deltaH and Marburg, Methanothermus fervidus and Thermococcus celer strain AL-1. On the basis of these and previously available sequences from Sulfolobus acidocaldarius, Haloferax volcanii and Methanosarcina barkeri the secondary structure of RNase P RNA in Archaea has been analyzed by phylogenetic comparative analysis. The archaeal RNAs are similar in both primary and secondary structure to bacterial RNase P RNAs, but unlike their bacterial counterparts these archaeal RNase P RNAs are not by themselves catalytically proficient in vitro.  相似文献   

15.
16.
17.
Holliday junction resolving enzymes are required by all life forms that catalyse homologous recombination, including all cellular organisms and many bacterial and eukaryotic viruses. Here we report the identification of three distinct Holliday junction resolving enzyme activities present in two highly divergent archaeal species. Both Sulfolobus and Pyrococcus share the Hjc activity, and in addition possess unique secondary activities (Hje and Hjr). We propose by analogy with the two other domains of life that the latter enzymes are viral in origin, suggesting the widespread existence of archaeal viruses that rely on homologous recombination as part of their life cycle.  相似文献   

18.
Hyperthermophilic Archaea and Bacteria are an extraordinarily important class of organisms for which genetic tools remain to be developed. Unique technological obstacles to this goal are posed by the thermophilic and, in some cases, strictly anaerobic nature of these organisms. However, recent advances in the cultivation of hyperthermophiles, in the discovery of genetic elements for vector development, and in the construction of genetic markers point toward the achievement of this goal in the near future. Transformation protocols have already been reported for Sulfolobus and Pyrococcus, and plasmid-mediated conjugation was recently found in Sulfolobus. Plasmids are available for Sulfolobus, Pyrococcus, and the bacterial hyperthermophile Thermotoga, and these provide the bases for vector construction in these hosts. A Desulfurococcus mobile intron may provide a novel means to introduce genes into a variety of archaeal hosts. With full genome sequences of several hyperthermophiles available soon, genetic tools will allow full exploitation of this information to study these organisms in depth and to utilize their unique properties in biotechnological applications. Received: 27 January 1997 / Accepted: 24 April 1997  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号