首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analysed the relative effects of food availability and temperature on rates of growth and development of a predatory planktonic water mite, Piona exigua. Growth in length of mites fed Daphnia, Ceriodaphnia and Chydorus was analysed by Gompertz or von Bertalanffy curves; these curves were compared by parallel curve analysis. Growth rates of nymphs and adult female mites increased with temperature; the duration of the imagochrysalis stage decreased. Females grown at 10 °C were smaller at final size than females grown at 15 °C, 18 °C or 22 °C. Females reared at food levels of 15 or 30 prey l−1 grew more slowly and were smaller than those provided with 60 or 120 prey l−1. Nymphs grew more slowly when Daphnia were the only prey, than when smaller prey were available. Food level did not affect nymph growth at 10 °C or 15 °C, but growth at 18 °C or 22 °C may have been slowed at the lowest food levels. Synergistic effects of temperature and food level on nymph growth were apparent only from analysis of growth curves and not from stage duration data.  相似文献   

2.
Warming ocean temperatures have been linked to kelp forest declines worldwide, and elevated temperatures can act synergistically with other local stressors to exacerbate kelp loss. The bull kelp Nereocystis luetkeana is the primary canopy-forming kelp species in the Salish Sea, where it is declining in areas with elevated summer water temperatures and low nutrient concentrations. To determine the interactive effects of these two stressors on microscopic stages of N. luetkeana, we cultured gametophytes and microscopic sporophytes from seven different Salish Sea populations across seven different temperatures (10–22°C) and two nitrogen concentrations. The thermal tolerance of microscopic gametophytes and sporophytes was similar across populations, and high temperatures were more stressful than low nitrogen levels. Additional nitrogen did not improve gametophyte or sporophyte survival at high temperatures. Gametophyte densities were highest between 10 and 16°C and declined sharply at 18°C, and temperatures of 20 and 22°C were lethal. The window for successful sporophyte production was narrower, peaking at 10–14°C. Across all populations, the warmest temperature at which sporophytes were produced was 16 or 18°C, but sporophyte densities were 78% lower at 16°C and 95% lower at 18°C compared to cooler temperatures. In the field, bottom temperatures revealed that the thermal limits of gametophyte growth (18°C) and sporophyte production (16–18°C) were reached during the summer at multiple sites. Prolonged exposure of bull kelp gametophytes to temperatures of 16°C and above could limit reproduction, and therefore recruitment, of adult kelp sporophytes.  相似文献   

3.
The predatory feeding of Mesocyclops edax and Cyclops vicinus was studied using the 14C-labelled Ceriodaphnia and some other kinds of the crustacean zooplankters. When given a choice, both species exhibited clear selection of smaller specimens of prey. The feeding rates depend on the kind of prey. The daily ration for the prey readily accepted by Mesocyclops was roughly equal to the predator's biomass, while it was only one half or one third of the body biomass in Cyclops vicinus. Only about one third of the killed biomass was actually ingested and 21–32% was assimilated when the copepods preyed upon the cladocerans or the copepodid larvae. When fed with naupliar larvae the cyclopoid copepods assimilated over 70% of the killed biomass. Almost one half of the freshly assimilated carbon passes through the short term cycle and is quickly respired and excreted.  相似文献   

4.
The relationship between temperature and the development of the West Indian sweet potato weevil, Euscepes postfasciatus, on an artificial larval diet containing powdered sweet potato root, was examined at different fixed temperatures from 22 to 31°C. The developmental periods for egg, larvae, and pupae stages shortened in correlation with increased temperature. The thermal constant was 769.2 degree-days and the developmental zero for female and male was 11.1 and 11.7°C, respectively. Although we can rear this weevil at temperatures ranging from 22 to 31°C, rearing temperatures should be kept between 25 and 28°C because the developmental stages were too long at 22°C and the larval period was delayed at 31°C. The basis for these developmental data will be a useful key factor in designing a plan to eradicate the weevil by using a mass-rearing system and SIT.  相似文献   

5.
Summary

Responses of larvae of two rhizocephalan species to changes in seawater temperature and salinity were studied under laboratory conditions. Peltogasterella gracilis parasitizes the hermit crab Pagurus pectinatus, which occurs at stable salinity and gradually changing temperature in summer. Sacculina polygenea is a parasite of the crab Hemigrapsus sanguineus, which lives in the intertidal zone in summer where salinity and temperature can fluctuate during the day. The development of both species is comprised of five naupliar stages and the cyprid stage, and it was considered successful if more than 50% of the nauplii attained the cyprid stage. P. gracilis nauplii successfully developed at 12–20°C and 30–34‰, but at 22°C successful development occurred in a narrower salinity range (32–34‰). All nauplii died both at 25°C and in 26‰. S. polygenea nauplii successfully reached the cyprid stage at higher temperatures (18–25°C) and a wider salinity range (18–34‰) than P. gracilis nauplii, but at 12°C and 16‰ larval development of S. polygenea was suppressed. Under favorable conditions, naupliar development lasted 3.5 days in P. gracilis and 2–3 days in S. polygenea. The cyprids of both rhizocephalan species demonstrated a greater resistance to temperature and salinity changes than nauplii. However, P. gracilis cyprids were active in a narrower salinity range (16–34‰), as compared to S. polygenea cyprids (8–34‰). Under favorable conditions the cyprids of both species survived for 6 to 10 days.  相似文献   

6.
Encarsia meritoria Gahan, a Neartic species recorded only in the USA, was found naturally occurring in Catalonia (north‐east Spain) in 1987. The morphology of immature stages, the rate of development in the range 12°C‐34°C, the longevity and fecundity at 24°C and some observations on its searching and host feeding behaviour are presented in this paper. Mean development times from egg laying to adult emergence ranged from 75 days at 12° C to 11 days at 28°C. The Lower Developmental Threshold computed from linear regression equations was 9°C. Females laid an average of 198 eggs (range 89–330) in an average of 34 days (longevity range 19–54 days). The intrinsic rate of increase at 24° C was 0.1717, slightly greater than the rm of T. vaporariorum and smaller than the values reported for E. tricolor and E. formosa, which is not very promising for biological control. However, this may not be a definitive conclusion, because factors other than those considered in our experiments may play an important role infield conditions.  相似文献   

7.
The effects of temperature on the development and survival of Lycaeides argyrognomon were examined in the laboratory. The eggs, larvae and pupae were reared at temperatures of 15, 17.5, 20, 25, 30 and 33°C under a long‐day photoperiod of 16‐h light and 8‐h darkness. The survival rates of the first–third instars ranged from 40.0 to 82.4%. The mortalities of the fourth instar were lower than those of the first–third instars. The development time of the overall immature stage decreased from 78.33 days at 15°C to 21.07 days at 30°C, and then increased to 24.33 days at 33°C. The common linear model and the Ikemoto–Takai model were used to estimate the thermal constant (K) and the developmental zero (T0). The values of T0 and K for the overall immature stages were 10.50°C and 418.83 degree‐days, and 9.71°C and 451.68 degree‐days by the common model and the Ikemoto–Takai model, respectively. The upper temperature thresholds (Tmax) and the optimal temperatures (Topt) of the egg, the first–third instars and the overall immature stages were estimated by the three nonlinear models. The ranges of Topt estimated were from 30.33°C to 32.46°C in the overall immature stages and the estimates of Tmax of the overall immature stages by the Briere‐1 and the Briere‐2 models were 37.18°C and 33.00°C, respectively. The method to predict the developmental period of L. argyrognomon using the nonlinear models was discussed based on the data of the average temperature per hour.  相似文献   

8.
Adult longevity, developmental time and juvenile mortality ofEncarsia formosa Gahan (Hymenoptera:Aphelinidae) parasitizing the Poinsettia-strain ofBemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on Poinsettia (Euphorbia pulcherrima Willd.) were investigated in laboratory experiments at three temperatures: 16 °C, 22 °C and 28 °C. Furthermore, the parasitoid's preference for different larval stages of the whitefly was determined at 24.5 °C. The lifespan ofE. formosa decreased with temperature from one month at 16 °C to nine days at 28 °C. A lower temperature threshold of 11 °C for adult development was found. The development of juvenile parasitoids inB. tabaci lasted more than two months at the lowest temperature, but was only 14 days when temperature was 28 °C. The lower temperature threshold for immature development was 13.3 °C, yielding an average of 207 day-degrees for the completion of development into adults. Juvenile mortality was high, varying from about 50% at 16 °C to about 30% at 22 °C and 28 °C.E. formosa preferred to oviposit in the 4th instar and prepupal stages ofB. tabaci followed by the 2nd and 3rd instars. The preference for the pupal stage was low. The parasitoid used all instars of the whitefly for hostfeeding, with no apparent differences between the stages. The average duration of the oviposition posture was four minutes. Demographic parameters were calculated from life tables constructed from the data. The intrinsic rate of increase (r m) and the net reproductive rate (R 0) increased with temperature from 0.0279 day−1 at 16 °C to 0.2388 day−1 at 28 °C and from about 12 at 16 °C to about 66 at 28 °C, respectively.  相似文献   

9.
Natural levels of solar UVR were shown to break and alter the spiral structure of Arthrospira (Spirulina) platensis (Nordst.) Gomont during winter. However, this phenomenon was not observed during summer at temperatures of ~30°C. Since little has been documented on the interactive effects of solar UV radiation (UVR; 280–400 nm) and temperature on cyanobacteria, the morphology, photosynthesis, and DNA damage of A. platensis were examined using two radiation treatments (PAR [400–700 nm] and PAB [PAR + UV‐A + UV‐B: 280–700]), three temperatures (15, 22, and 30°C), and three biomass concentrations (100, 160, and 240 mg dwt [dry weight] · L?1). UVR caused a breakage of the spiral structure at 15°C and 22°C, but not at 30°C. High PAR levels also induced a significant breakage at 15°C and 22°C, but only at low biomass densities, and to lesser extent when compared with the PAB treatment. A. platensis was able to alter its spiral structure by increasing helix tightness at the highest temperature tested. The photochemical efficiency was depressed to undetectable levels at 15°C but was relatively high at 30°C even under the treatment with UVR in 8 h. At 30°C, UVR led to 93%–97% less DNA damage when compared with 15°C after 8 h of exposure. UV‐absorbing compounds were determined as negligible at all light and temperature combinations. The possible mechanisms for the temperature‐dependent effects of UVR on this organism are discussed in this paper.  相似文献   

10.
The life-histories of four enchytraeid worms, Lumbricillus rivalis, Enchy-traeus coronatus, E. buchholzi, and E. albidus which occur in sewage percolating filters, were studied under laboratory conditions at 8 , 15 and 20°C. The number of ova per cocoon varied from 0 to 50 (L. rivalis), 0 to 33 (E. coronatus), 1 to 9 (E. buchholzi) and 0 to 22 (E. albidus). The mean number of ova per cocoon was highest at 15°C for all species except E. coronatus which had a highest mean value at 8°C. The number of ova in cocoons was correlated with cocoon length (P < 0.001) for all species. Cocoon production usually increased with temperature ranging from 0.8 cocoons per adult per week at 8°C to 2.0 at 20°C for L. rivalis, and from 1–4 to about 2.6 for E. coronatus and E. buchholzi. The total number of ova produced by each E. coronatus (350 at 8°C to 550 at 20°C) was similar to that produced by each L. rivalis (600 at 8°C to 350 at 20°C) and was about five times greater than the total numbers produced by the other two species. Cocoon and ova production and the number of ova per cocoon varied with the age of the adult, usually reaching a peak soon after maturity. Hatching success was low and generally 40–50 % of ova failed to develop; subsequent mortality among immature worms was about 10–20%. Growth was more rapid at the higher temperatures; L. rivalis matured in about 26 days at 20°C, the clitellum forming when the worm was 13–14 mm long; data for the other species are 13 days and 5–6 mm (E. coronatus); 16 days and 3–4 mm (E. buchholzi); 28 days and 13–14 mm (E. albidus). The maturation period at 8°C was at least twice that at 20°C. The generation period (cocoon to cocoon) was about a month at 20°C for all species except E. albidus (2 months), but as some species had longer reproductive periods than others the actual number of generations per year was highest in E. buchholzi, 7.0 per year, and lowest in E. albidus, about 3.3 per year, At 8°C all four species had between 1.4 and 2.8 generations a year. A comparison of expected and observed population densities of L. rivalis and E. coronatus in a sewage percolating filter showed that neither achieved values approaching their potential summer densities although ample food was apparently available. Of the four species studied only E. buchholzi produced viable ova without pairing.  相似文献   

11.
Macropetasma africanus (Balss) has been successfully spawned and its larvae reared under controlled laboratory conditions. The relationship between egg number (E) and female total length (L) was E = 18.59 L2.11. An experiment was designed to test the effect of temperature on larval development, survival and growth. Temperature effected larval development time, from 13–15 days at 25°C, to 25 days at 15°C (nauplius 1 to post-larva). Mortality was low for the naupliar stages at 25, 22 and 18°C, while at 15°C only 52% of the larvae reached nauplius 6. Mortality was highest from nauplius 6 to protozoea 1 (17, 21, and 18% at 25, 22, and 18°C, respectively), but decreased considerably for all temperatures once the mysis stage was reached. Overall survival rates from nauplius 1 to post-larva decreased with decreasing temperature (65, 54, 48, and 39% at 25, 22, 18, and 15°C respectively). Temperature also significantly affected larval growth. At 25°C mean total length was significantly (P < 0.05) larger than at 15°C (protozoea 2 to post-larva), while from protozoea 3 to post-larva total length differences were significantly different (P < 0.05) between 18 and 25°C. M. africanus has a major spawning peak in summer, suggesting that there may be a selective advantage to reproducing during the warmer months.  相似文献   

12.
Many species of mealybugs (Hemiptera: Pseudococcidae) are serious pests of economically important crops worldwide. We evaluated the influence of constant temperatures: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34°C on the life history and demographic parameters of Spalgis epius (Lepidoptera: Lycaenidae), a candidate biological control agent of various species of mealybugs. No eggs completed their development at 14 and 34°C. Egg-to-adult developmental time significantly decreased from 89.9 days at 16°C to 20.4 days at 32°C. The estimated lower temperature threshold of 10.2°C and 416.6 degree-days were required to complete egg-to-adult development. The mortality of immature stages was maximum at 16 and 32°C and minimum at 28°C. The highest lifetime fecundity was recorded at 28°C and it significantly decreased at 32°C. The longevity of adults was about three times more at 16°C than at 30 and 32°C. The net reproductive rate (R 0) significantly increased with increased temperatures up to 28°C and significantly decreased at 32°C. The mean generation time (T) significantly decreased with increased temperature up to 30°C, but it significantly increased at 32°C. The intrinsic rate of population increase (r m ) was highest at 30°C. The finite rate of increase (λ) was significantly greater at 30°C than at other temperatures. These data suggest that S. epius can develop, reproduce and survive in a wide range of temperatures and thus could be regarded a potential biological control agent of mealybugs.  相似文献   

13.
Abstract. The effects of thermoperiods on diapause induction in continuous darkness or under a 12 : 12 h LD photoperiod were investigated in the cabbage beetle, Colaphellus bowringi Baly, a typical short‐day species. The diapause response curves both at different constant temperatures and at the thermocycle of format CT x: (24 ? x) h (16 : 28 °C) under continuously dark rearing conditions showed that the incidence of diapause depended mainly on whether or not the mean temperature was ≤20 °C or >20 °C. If the mean temperature was ≤20 °C, all individuals entered diapause; if >20 °C, the incidence of diapause declined gradually with increasing mean temperatures. The thermocycle (CT 12 : 12 h) with a series of different cryophases (8–22 °C) and thermophases (24–32 °C) under continuous darkness demonstrated a cryophase response threshold temperature of approximately 19 °C and a thermophase response threshold temperature of approximately 31 °C. Thermoperiodic amplitude (temperature difference between cryophase and thermophase) was shown to have a significant influence on diapause induction at the mean temperatures of 22, 23 and 24 °C, but not at ≥25 °C. Thermoperiodic responses under LD 12 : 12 h clearly showed that the incidence of diapause was influenced strongly by the photophase temperature. The thermoperiod under LD 12 : 12 h induced a much lower incidence of diapause than the thermoperiod with the same temperature in continuous darkness. The ecological significance of thermoperiodic induction of diapause in this species is discussed.  相似文献   

14.
The developmental time and survival of immature stages of Neoseiulus californicus were studied at nine constant temperatures (12, 16, 24, 24, 28 32, 36, 38 and 40°C), 60–70% RH, and a photoperiod of 16 : 8 (L : D) h. The total mortality of immature N. californicus was lowest at 24°C (4.5%) and highest at 38°C (15.2%). The total developmental time decreased with increasing temperature between 12°C (18.38 days) and 32°C (2.98 days), and increased beyond 32°C. The relationship between the developmental rate and temperature was fitted by five nonlinear developmental rate models (Logan 6, Lactin 1, 2 and Briere 1, 2). The nonlinear shape of temperature development was best described by the Lactin 1 model (r2 = 0.98). The developmental variation of each stage was well described by the three‐parameter Weibull distribution model (r2 = 0.91–0.93). The temperature‐dependent developmental models of N. californicus developed in this study could be used to determine optimal temperature conditions for its mass rearing, to predict its seasonal population dynamics in fruit tree orchards or greenhouse crops, or to develop a population dynamics model of N. californicus.  相似文献   

15.
The effect of temperature on the biology of Praon volucre (Haliday, 1833) (Hymenoptera: Braconidae) in Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera: Aphididae) hosts was studied and the thermal requirements of the parasitoid were determined. Experiments were carried out at 16, 19, 22, 25, and 28 ± 1°C with 70 ± 10% relative humidity and 12 h photophase. The developmental time of P. volucre males and females decreased between 16 and 23°C. The highest percentages of aphid parasitism and adult parasitoid emergence were observed at 16, 19, and 22°C. The sex ratio (expressed as % females) decreased between 16 and 23°C. Male and female longevity was high between 19 and 22°C and decreased strongly at 25°C. The lower temperature threshold for P. volucre was 5.17°C and the thermal constant was 243 degrees-days.  相似文献   

16.
In this study, we evaluated the effect of temperature on the development and reproductive biology of Serangium japonicum (Coleoptera: Coccinellidae) at seven constant temperature regimes (17, 20, 23, 26, 29, 32 and 35°C) for its effect as a predator of Bemisia tabaci (Homoptera: Aleyrodidae). Results indicated that the duration of the egg, larval and pupal stages were significantly affected by temperature. The developmental time gradually declined with the increase of temperature from 17 to 29°C, however an extension in the developmental periods was observed in the temperature range of 32 to 35°C. The survival rates of different insect stages were stable at temperatures between 20 and 32°C; however at extreme temperatures of 35°C, a sharp decrease was evident. The highest fecundity of the female (387.2 eggs per female) was recorded at 20°C. Based on these results, life tables of S. japonicum were constructed for temperatures in the range 20–35°C. The maximum reproductive rate (R 0=279.9) occurred at 26°C. The maximum values for innate capacity for increase (r m=0.1131) and the finite rate of increase (λ=1.1197) occurred at 29°C. The mean generation time (T) decreased with increased temperature, the longest of which was 76.0 days (at 20°C) and the shortest was 36.6 days (at 32°C). These results offer valuable insight on the importation and establishment of S. japonicum into new environments with diverse temperature regimes.  相似文献   

17.
The annual kelp Eckloniopsis radicosa is distributed along Japanese coasts and occurs within the area with a February isotherm ranging 15–18°C and August isotherm ranging 25–28°C. In this study, the effects of temperature on the gametophyte growth and maturation, and the young sporophyte growth of E. radicosa were examined and the results are discussed in relation to the distribution of other warm‐adapted kelp species and the potential effects of climate change. The optimal temperature ranges for growth of male and female gametophytes were 23–27°C and 20–26°C, respectively. The upper survival temperature for gametophyte growth was 31°C for males and 30°C for females, respectively. The optimal temperature range for maturation of female gametophytes was ≤23°C. The optimal temperature range for growth of young sporophytes was 14–22°C. It was clarified that E. radicosa has the most warm‐adapted characteristics for growth and maturation of gametophytes among members of the Laminariales studied so far. The natural seawater temperature ranges during the growth and maturation seasons for gametophytes of E. radicosa, as well as the growth season for young sporophytes near to the northern and southern distribution limits (Izu‐Oshima: 14.9–24.5°C, Ichiki‐kushikino: 17.1–29.6°C), agreed with the experimentally determined temperature requirements. The warm‐adapted gametophyte stage and annual lifecycle are major factors enabling survival of E. radicosa in warm waters near tropical regions along the Japanese coast.  相似文献   

18.
Cucumber mosaic (CMV) and alfalfa mosaic (AlfMV) viruses could not be detected in Nicotiana rustica tissues cultured at 32 °C for 16–18 days or at 40 °C for 5 days, but infectivity remained high in comparable tissue cultured at 22 °C. Incubation of infected cultures at 28–30 °C resulted in an initial reduction followed by a partial recovery in the infectivity of both viruses. The infectivity of CMV in tissues grown between 12 and 32 °C was highest in cultures grown at 12 °C. Although CMV infectivity was not detected in cultures after 16–18 days at 32 °C, virus was eliminated only after a further 30 days at 32 °C. When cultures were transferred from 32 to 22 °C after shorter treatment periods, infectivity rapidly increased to levels higher than those of infected tissues grown continuously at 22 °C. At 40 °C, CMV was eliminated from infected tissues after 9 days and AlfMV after 7 days. Cultures grown continuously at 40 °C deteriorated rapidly but, when grown under diurnal alternating periods of 8 h at 40 °C and 16 h at 22 °C, they remained viable and CMV was also inactivated.  相似文献   

19.
Summary

Gemmules of Eunapius fragilis collected during the fall and kept at 20° C for up to 6 months did not germinate. Freshly collected gemmules, which were dried at 20° C for 7 days and then rehydrated, also exhibited a very low capacity for germination. However, gemmules, stored at 20° C for several months and then dried, showed a much higher level of germination (but usually no more than 50%) after they were returned to pond water. Gemmules, stored at 4–5° C for 4 to 6 weeks, exhibited at most very little germination when they were tested at 20° C. On the other hand, gemmules, which were chilled at 4–5° C for 4 to 6 weeks and then dried for 7 days, underwent rapid and nearly complete germination upon rehydration. These results provide clear evidence for a synergistic effect between low temperature and desiccation in breaking gemmule diapause. It is suggested that in temporary habitats where E. fragilis often survives the dry summer as gemmules, drying may be the primary agent releasing the gemmules from diapause so that they germinate in the fall upon the return of water. A brief exposure of the gemmules to low temperatures before and/or during the dry period may enhance the effect of desiccation.  相似文献   

20.
The aim of this study was to investigate under a controlled environment, the effect of temperature on the survival and infectivity of Pseudotheraptus devastans Distant, a cassava anthracnose disease vector. The insect P. devastans was collected from young cassava (Manihot esculenta Crantz) field plots, at the International Institute of Tropical Agriculture, (IITA), Ibadan, Nigeria. A mixture of the different developmental stages of eggs, first to fifth instar nymphs, and adults, were incubated in controlled environment chambers, under various constant temperatures of: 15, 17, 22, 25, 27, 30, and 35°C. Relative humidity at different temperature conditions were recorded and maintained at 90%, 85%, 80%, 75%, 70%, 65%, and 60%, respectively. A significant increase in insect survival was observed between 22 and 27°C temperature conditions while a significant decrease in survival was observed at 15°C and above 30°C. Lesion number, lesion diameter and infectivity among the insect stages varied as a function of temperature and relative humidity. Infectivity was highest at 22–25°C maintained at 75–80% RH and lowest at 15°C and above 30°C maintained respectively, at 65% RH and 90% RH. There was considerable low vector infectivity due to low survival of the insects at extreme temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号