首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP) are building units for all isoprenoids; thus, intracellular pool sizes of IDP and DMADP play important roles in living organisms. Several methods have been used to quantify the amount of DMADP or the combined amount of IDP plus DMADP, but measuring the DMADP/IDP ratio has been difficult. In this study, a method was developed to measure the ratio of DMADP/IDP. Catalyzed by a recombinant IDP isomerase (IDI) together with a recombinant isoprene synthase (IspS), IDP was converted to isoprene, which was then detected by chemiluminescence. With this method, the in vitro equilibrium ratio of DMADP/IDP was found to be 2.11:1. IDP and DMADP pools were significantly increased in Escherichia coli transformed with methylerythritol 4-phosphate pathway genes; the ratio of DMADP/IDP was 3.85. An E. coli strain transformed with IspS but no additional IDI had a lower DMADP level and a DMADP/IDP ratio of 1.05. Approximately 90% of the IDP and DMADP pools in light-adapted kudzu leaves were light dependent and so presumably were located in the chloroplasts; the DMADP/IDP ratios in chloroplasts and cytosol were the same as the in vitro ratio (2.04 in the light and 2.32 in the dark).  相似文献   

2.
Isopentenyl diphosphate:dimethylallyl diphosphate (IPP:DMAPP) isomerase catalyses a crucial activation step in the isoprenoid biosynthesis pathway. This enzyme is responsible for the isomerization of the carbon-carbon double bond of IPP to create the potent electrophile DMAPP. DMAPP then alkylates other molecules, including IPP, to initiate the extraordinary variety of isoprenoid compounds found in nature. The crystal structures of free and metal-bound Escherichia coli IPP isomerase reveal critical active site features underlying its catalytic mechanism. The enzyme requires one Mn(2+) or Mg(2+) ion to fold in its active conformation, forming a distorted octahedral metal coordination site composed of three histidines and two glutamates and located in the active site. Two critical residues, C67 and E116, face each other within the active site, close to the metal-binding site. The structures are compatible with a mechanism in which the cysteine initiates the reaction by protonating the carbon-carbon double bond, with the antarafacial rearrangement ultimately achieved by one of the glutamates involved in the metal coordination sphere. W161 may stabilize the highly reactive carbocation generated during the reaction through quadrupole- charge interaction.  相似文献   

3.
Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.  相似文献   

4.
1. UDP-xylose and UDP-glucose both bind to UDP-glucose dehydrogenase in the absence of NAD+, causing an enhancement of protein fluorescence. 2. The binding of UDP-xylose is pH-dependent, tighter binding being observed at pH8.2 than at pH8.7. 3. At low protein concentrations sigmiodal profiles of fluorescence enhancement are obtained on titration of the enzyme with UDP-xylose. As the protein concentration is increased the titration profiles become progressively more hypebolic in shape. 4. The markedly different titration profiles obtained on titrating enzyme and the enzyme-NAD+ complex with UDP-xylose suggests a conformational difference between these two species 5. NAD+ lowere the apparent affinity of the enzyme for UDP-xylose. 6. There is no change in the apparent moleculare weight of UDP-glucose dehydrogenase on binging UDP-xylose. 7. Protein modification by either diethyl pyrocarbonate or 5, 5'-dithiobis-(2-nitrobenzoate) does not "desensitize" the enzyme with respect to the inhibition by UDP-xylose. 8. UDP-xylose lowers the affinity of the enzyme for NADG. 9. It is suggested that UDP-xylose is acting as a substrate analogue of UDP-glucose and causes protein-conformational changes on binding to the enzyme.  相似文献   

5.
Isoprenyl diphosphate synthases (IDSs) catalyze some of the most basic steps in terpene biosynthesis by producing the prenyl diphosphate precursors of each of the various terpenoid classes. Most plants investigated have distinct enzymes that produce the short‐chain all‐trans (E) prenyl diphosphates geranyl diphosphate (GDP, C10), farnesyl diphosphate (FDP, C15) or geranylgeranyl diphosphate (GGDP, C20). In the genome of Arabidopsis thaliana, 15 trans‐product‐forming IDSs are present. Ten of these have recently been shown to produce GGDP by genetic complementation of a carotenoid pathway engineered into Escherichia coli. When verifying the product pattern of IDSs producing GGDP by a new LC‐MS/MS procedure, we found that five of these IDSs produce geranylfarnesyl diphosphate (GFDP, C25) instead of GGDP as their major product in enzyme assays performed in vitro. Over‐expression of one of the GFDP synthases in A. thaliana confirmed the production of GFDP in vivo. Enzyme assays with A. thaliana protein extracts from roots but not other organs showed formation of GFDP. Furthermore, GFDP itself was detected in root extracts. Subcellular localization studies in leaves indicated that four of the GFDP synthases were targeted to the plastoglobules of the chloroplast and one was targeted to the mitochondria. Sequence comparison and mutational studies showed that the size of the R group of the 5th amino acid residue N‐terminal to the first aspartate‐rich motif is responsible for C25 versus C20 product formation, with smaller R groups (Ala and Ser) resulting in GGDP (C20) as a product and a larger R group (Met) resulting in GFDP (C25).  相似文献   

6.
7.
Diphosphate-modified substrates for prenyltransferase were synthesized and examined as substrates for the prenyltransferase reaction. They were dimethylallyl methylenediphosphonate, geranyl methylenediphosphonate, geranyl imidodiphosphate, geranyl phosphosulfate, farnesyl methylenediphosphonate, farnesyl imidodiphosphate, and farnesyl phosphosulfate. All of them except dimethylallyl methylenediphosphonate were accepted as substrates by solanesyl diphosphate synthase to give solanesyl diphosphate and the former four analogs were also accepted as substrates by farnesyl diphosphate synthase to give farnesyl diphosphate. The Km values of both enzymes for the methylenediphosphonate and imidodiphosphate analogs were comparable to those of the corresponding diphosphate substrates, but the phosphosulfate analogs showed much greater Km values than the diphosphate substrates. On the other hand, the Vmax values for these artificial substrates were all smaller than those for the corresponding natural substrates. Kinetic experiments with the analogs showed that the ionization-condensation-elimination mechanism proposed for the farnesyl diphosphate synthase reaction holds also for the solanesyl diphosphate synthase reaction and that the diphosphoryl structure, capable of chelating with divalent cations, is important topologically and kinetically rather than thermodynamically.  相似文献   

8.
9.
Two types of isopentenyl diphosphate:dimethylallyl diphosphate isomerases (IDI) have been characterized at present. The long known IDI-1 is only dependent on divalent metals for activity, whereas IDI-2 requires a metal, FMN and NADPH. Here, we report the first structure of an IDI-2 from Bacillus subtilis at 1.9A resolution in the ligand-free form and of the FMN-bound form at 2.8A resolution. The enzyme is an octamer that forms a D4 symmetrical open, cage-like structure. The monomers of 45 kDa display a classical TIM barrel fold. FMN is bound only with very moderate affinity and is therefore completely lost during purification. However, the enzyme can be reconstituted in the crystals by soaking with FMN. Three glycine-rich sequence stretches that are characteristic for IDI-2 participate in FMN binding within the interior of the cage. Regions harboring strictly conserved residues that are implicated in substrate binding or catalysis remain largely disordered even in the presence of FMN.  相似文献   

10.
Farnesyl diphosphate synthase (FPPase) catalyzes chain elongation of the C(5) substrate dimethylallyl diphosphate (DMAPP) to the C(15) product farnesyl diphosphate (FPP) by addition of two molecules of isopentenyl diphosphate (IPP). The synthesis of FPP proceeds in two steps, where the C(10) product of the first addition, geranyl diphosphate (GPP), is the substrate for the second addition. The product selectivity of avian FPPase was altered to favor synthesis of GPP by site-directed mutagenesis of residues that form the binding pocket for the hydrocarbon residue of the allylic substrate. Amino acid substitutions that reduced the size of the binding pocket were identified by molecular modeling. FPPase mutants containing seven promising modifications were constructed. Initial screens using DMAPP and GPP as substrates indicated that two of the substitutions, A116W and N144'W, strongly discriminated against binding of GPP to the allylic site. These observations were confirmed by an analysis of the products from reactions with DMAPP in the presence of excess IPP and by comparing the steady-state kinetic constants for the wild-type enzyme and the A116W and N114W mutants.  相似文献   

11.
12.
13.
14.
15.
Uridine diphosphate acetylglucosamine   总被引:9,自引:0,他引:9  
  相似文献   

16.
17.
Isoprenyl diphosphate synthases catalyze consecutive condensations of isopentenyl diphosphates with allylic primer substrates to form linear backbones for all isoprenoid compounds including cholesterol. These synthases are classified according to the final chain length of their end products and the stereochemistry of the newly formed double bonds. Mutagenesis and X-ray crystallography data have uncovered the basic catalytic and chain length determination mechanisms of E-isoprenyl diphosphate synthases and shed light on their possible evolutionary course. Although much less is known about the Z-isoprenyl diphosphate synthase family, successful cloning and subsequent crystallizations in the near future will no doubt bring more insight as researchers begin to unravel the essential components and precise reaction mechanisms of this cellular machinery.  相似文献   

18.
Farnesyl diphosphate (FPP) is a substrate for a diverse number of enzymes found in nature. Photoactive analogues of isoprenoid diphosphates containing either benzophenone, diazotrifluoropropionate or azide groups have been useful for studying both the enzymes that synthesize FPP as well as those that employ FPP as a substrate. Here we describe the synthesis and properties of a new class of FPP analogues that links an unmodified farnesyl group to a diphosphate mimic containing a photoactive benzophenone moiety; thus, importantly, these compounds are photoactive FPP analogues that contain no modifications of the isoprenoid portion of the molecule that may interfere with substrate binding in the active site of an FPP utilizing enzyme. Two isomeric compounds containing meta- and para-substituted benzophenones were prepared. These two analogues inhibit Saccharomyces cerevisiae protein farnesyltransferase (ScPFTase) with IC50 values of 5.8 (meta isomer) and 3.0 μM (para isomer); the more potent analogue, the para isomer, was shown to be a competitive inhibitor of ScPFTase with respect to FPP with a KI of 0.46 μM. Radiolabeled forms of both analogues selectively labeled the β-subunit of ScPFTase. The para isomer was also shown to label Escherichia coli farnesyl diphosphate synthase and Drosophila melanogaster farnesyl diphosphate synthase. Finally, the para isomer was shown to be an alternative substrate for a sesquiterpene synthase from Nostoc sp. strain PCC7120, a cyanobacterial source; the compound also labeled the purified enzyme upon photolysis. Taken together, these results using a number of enzymes demonstrate that this new class of probes should be useful for a plethora of studies of FPP-utilizing enzymes.  相似文献   

19.
Enzyme characteristics of trans-prenyl diphosphate synthase (Tk-IdsA) from Thermococcus kodakaraensis, which catalyzes the consecutive trans-condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate, were examined. Product analysis revealed that Tk-IdsA is a bifunctional enzyme, farnesyl diphosphate (FPP, C(15))/geranylgeranyl diphosphate (GGPP, C(20)) synthase, and mainly yields both C(15) and C(20). The FPP/GGPP product ratio increases with the rise of the reaction temperature. The kinetic parameters obtained at 70 and 90 degrees C demonstrated that the rise of the temperature elevates the k(0) value for the C(10) allylic substrate to more than those for the C(5) and C(15) allylic substrates. These data suggest that Tk-IdsA contributes to adjust the membrane composition to the cell growth temperature by modulating its substrate and product specificities. Mutation study indicated that the aromatic side chain of Tyr-81 acts as a steric hindrance to terminate the chain elongation and defines the final product length.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号