首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To examine patterns of abundance, density, size and shell use in land hermit crabs, Coenobita clypeatus (Herbst), occurring on three groups of small islands, and to determine how these variables change among islands. Location Small islands in the Central Exuma Cays and near Great Exuma, Bahamas. Methods Land hermit crabs were captured in baited pitfall traps and were separately attracted to baits. A mark–recapture technique was used in conjunction with some pitfall traps monitored for three consecutive days. The size of each crab and the type of adopted gastropod shell were recorded, along with physical island variables such as total island area, vegetated area, island perimeter, elevation and distance to the nearest mainland island. Results Relative abundances, densities and sizes of crabs differed significantly among the three island groups. Densities of land hermit crabs were as high as 46 m−2 of vegetated island area. In simple and multiple linear regressions, the only variable that was a significant predictor of the abundance of hermit crabs was the perimeter to area ratio of the island. Patterns of gastropod shell use varied significantly among the island groups, and the vast majority of adopted shells originated from gastropod species that inhabit the high intertidal and supratidal shorelines of the islands. Main conclusions Although densities of land hermit crabs varied, they were relatively high on many islands, and land hermit crabs may play an important role in these insular food webs. Patterns of shell use may be strongly restricted by island geomorphology: irregular shorelines provide relatively more habitat for the gastropod species that account for the majority of adopted shells and the steep sides of the islands prevent the accumulation of marine gastropod shells. The size of adult hermit crabs appears to be limited by the relatively small gastropod shells available, while the abundance of hermit crabs may be limited by the number of shells available.  相似文献   

2.
The small-scale distribution and resource utilization patterns of hermit crabs living in symbiosis with sea anemones were investigated in the Aegean Sea. Four hermit crab species, occupying shells of nine gastropod species, were found in symbiosis with the sea anemone Calliactis parasitica. Shell resource utilization patterns varied among hermit crabs, with Dardanus species utilizing a wide variety of shells. The size structure of hermit crab populations also affected shell resource utilization, with small-sized individuals inhabiting a larger variety of shells. Sea anemone utilization patterns varied both among hermit crab species and among residence shells, with larger crabs and shells hosting an increased abundance and biomass of C. parasitica. The examined biometric relationships suggested that small-sized crabs carry, proportionally to their weight, heavier shells and increased anemone biomass than larger ones. Exceptions to the above patterns are related either to local resource availability or to other environmental factors.  相似文献   

3.
Empty gastropod shells are an important resource for many animals in shallow benthic marine communities. Shells provide shelter for hermit crabs, octopuses, and fishes, provide attachment substratum for hermit crab symbionts, and directly or indirectly modify hermit crab predation. Creation of an empty shell due to predation of one gastropod on another and acquisition of that shell by a hermit crab are two key events in the subsequent use of that shell. Shells of different gastropod species and the species of hermit crab acquiring them affect the symbiont complement that attaches to the shell, which in turn may affect future shell use by other symbionts. Certain shell types worn by the hermit crab, Pagurus pollicaris Say, are positively associated with the symbiotic sea anemone, Calliactis tricolor (Lesueur), which protects the hermit crab from predation by the crab, Calappa flammea (Herbst), and possibly from the octopus, Octopus joubini Robson. Shells of other species of gastropods are resistant to being crushed by the spiny lobster, Panulirusargus (Latreille). The inter-and intraspecific interactions centered on the gastropod shell are termed a “habitat web.” The potential of the shell to limit the size and distribution of animal populations demonstrates how this resource helps shape community structure.  相似文献   

4.
Shell utilization patterns of three sympatric hermit crab species from the Bay of Panama are examined. Shell preferences, as shown by laboratory choice experiments and the selective use of empty shells experimentally added to hermit crab populations, are shown to be important determinants of shell utilization under natural conditions.Factors which influence the types and sizes of shells occupied by hermit crabs in separate populations include: (1) the presence and relative abundance of different gastropod species; (2) the specific shell preferences of different hermit crab species; and (3) the presence and relative abundance of sympatric hermit crab competitors for the limited supply of empty shells. Since the size and type of shell occupied by a hermit crab influences its growth rate and reproductive output, these factors appear to have a direct effect on hermit crab fitness and the demographic structure of separate hermit crab populations.  相似文献   

5.
Shell selection behaviour and spatial distribution of three hermit crab species, Diogenes avarus, D. karwarensis, and Areopaguristes perspicax, were studied at six sites along the intertidal zones of Hormuz Island in the Persian Gulf. 1025 specimens were collected occupying altogether 31 shell species (D. avarus 28 species, A. perspicax 22 species, and D. karwarensis 8 species). Diogenes avarus was found to be by far the most abundant of these three crab species, and Cerithidea cingulata the dominant shell occupied by these hermit crabs. The distribution of the hermit crabs significantly varied (p<0.05) among the sites. The number and the wide diversity of shells occupied in different sites show that the main factor in shell selection for these hermit crabs is the abundance and distribution of shell species in the field.  相似文献   

6.
Schejter, L. and Mantelatto, F.L. 2011. Shelter association between the hermit crab Sympagurus dimorphus and the zoanthid Epizoanthus paguricola in the southwestern Atlantic Ocean. —Acta Zoologica (Stockholm) 92 : 141–149. The available literature on zoanthid–hermit crab associations deals only with records of this phenomenon, providing no detailed information. We describe, for the first time, the shell‐like colonies of Epizoanthus paguricola associated with the hermit crab Sympagurus dimorphus from benthic samples taken in the Argentine Sea, between 85 and 131 m depth, and provide information about morphometric relationships between the hermits and the zoanthids. In total, 260 specimens (137 males and 123 females) of S. dimorphus were collected, 240 (92.3%) of which were living in symbiosis with E. paguricola. The remaining 20 (7.7%) were living inside gastropod shells. As the initial structure of the pseudoshell, 12 different gastropod species were found (all were almost totally covered with colonies of E. paguricola). The hermit crab lives in the spiral cavity inside the soft colony, which seemed to be slightly different depending on the initial gastropod. Aperture pseudoshell morphology did not seem to be related to the sex of the hermit crab host, although males showed larger apertures for a given colony size. This fact is probably related to a larger size of male’s cheliped (sexual dimorphic character) used like a gastropod operculum and that may serve as a template for the growing of the aperture pseudoshell edge. The number of epizoanthid polyps per colony increased in relation to the weight of the colony and to the size of the hermit crab. A process of selection of the initial shell was evident, because species of Naticidae were not the most common gastropods in this benthic community, but were those most used by hermit crabs (>60%). The puzzling association between hermit crab, shell and zoanthid presumably occurs during the hermit juvenile phase, when the crab occupies a small shell, and a zoanthid larva settles on it. Given the close relationship between S. dimorphus and E. paguricola found in this region, we support the idea that due to the low availability of adequate gastropod shells for hermit life cycle, this association allows the establishment and the continuity of the hermit crab population in the studied area.  相似文献   

7.

Many studies have investigated shell‐related behaviour in hermit crabs. Few studies, however, have focused specifically on the intraspecies aggression associated with shell competition. We examined intraspecies aggression in hermit crab (Pagurus samuelis) pairs as it relates to competition for a limiting resource, gastropod shells. Pairs of hermit crabs were observed in the laboratory in four different treatments that varied the presence or absence of shells for one or both of the crabs. Measurements of the latency to respond, the number of bouts, and the fight durations were recorded. There was a significant difference among treatments for all three measurements, and naked hermit crabs were much more aggressive than housed hermit crabs. There was no significant difference in aggression between males and females in any of the three treatments. The heightened aggression observed in naked P. samuelis is likely in service of acquiring a protective shell.  相似文献   

8.
The survival and reproductive success of hermit crabs is intrinsically linked to the quality of their domicile shells. Because damaged or eroded shells can result in greater predation, evaluating shell structure may aid our understanding of population dynamics. We assessed the structural attributes of Cerithium atratum shells through assessments of (a) density using a novel approach involving computed tomography and (b) tolerance to compressive force. Our goal was to investigate factors that may influence decision making in hermit crabs, specifically those that balance the degree of protection afforded by a shell (i.e. density and strength) with the energetic costs of carrying such resources. We compared the density and relative strength (i.e. using compression tests) of shells inhabited by live gastropods, hermit crabs (Pagurus criniticornis) and those found empty in the environment. Results failed to show any relationship between density and shell size, but there was a notable effect of shell density among treatment groups (gastropod/empty/hermit crab). There was also a predictable effect of shell size on maximum compressive force, which was consistent among occupants. Our results suggest that hermit crabs integrate multiple sources of information, selecting homes that while less dense (i.e. reducing the energy costs of carrying these resources), still offer sufficient resistance to compressive forces (e.g. such as those inflicted by shell-breaking predators). Lastly, we show that shell size generally reflects shell strength, thus explaining the motivation of hermit crabs to search for and indeed fight over the larger homes.  相似文献   

9.
This study was designed to evaluate the effect of interference and exploitation competition in shell partitioning between two hermit crab species (Pagurus criniticornis and Clibanarius antillensis). Field samples revealed that shells of the gastropod Cerithium atratum were the main resource used by both hermit crab species and that Pagurus used eroded or damaged shells in higher frequency than Clibanarius. The exploitative ability of each species was compared between species in the laboratory using dead gastropod (Cerithium) baits to simulate predation events and signalize newly available shells to hermit crabs. Pagurus reached the baits more rapidly than Clibanarius, but this higher exploitative ability did not explain shell utilization patterns in nature. Another experiment evaluated the dominance hierarchy between these two hermit crab species and revealed that Clibanarius was able to outcompete Pagurus for higher quality shells in agonistic encounters. This higher interference competitive ability of Clibanarius in relation to Pagurus may explain field observations. Nevertheless, Pagurus may be responsible to enhance shell availability to other hermit crab species that have lower ability to find and use newly available shells. Differently, the poorer condition of shells used by Pagurus, the higher ability of this species to attend gastropod predation events and its higher consumption rate by shell-breaking crabs (Menippe nodifrons) may increase its predation risks, thus revealing the disadvantages of such an exploitative competitive strategy for hermit crabs.  相似文献   

10.
Hermit crabs are critically dependent upon gastropod shells for their survival and reproductive fitness. While anecdotal reports have suggested that hermit crabs may be capable of removing live gastropods from their shells to access the essential shell resource, no systematic experiments have been conducted to investigate this possibility. This paper reports experiments on both marine (Pagurus bernhardus) and terrestrial (Coenobita compressus) hermit crabs in which crabs were paired in the laboratory with the gastropods whose shells they inhabit in the field. Pairings included both shelled and naked crabs and spanned the full range of the gastropod life cycle. Neither marine nor terrestrial hermit crabs were successful at removing live gastropods from their shells. Furthermore, only a small fraction of the crabs (5.7%) were capable of accessing shells in which the gastropod had been killed in advance, with its body left intact inside the shell. Finally, although hermit crabs readily entered empty shells positioned on the surface, few crabs (14.3%) were able to access empty shells that were buried just centimeters beneath them. These results suggest that hermit crabs are constrained consumers, with the shells they seek only being accessible during a narrow time window, which begins following natural gastropod death and bodily decomposition and which typically ends when the gastropod's remnant shell has been buried by tidal forces. Further experiments are needed on more species of hermit crabs as well as fine-grained measurements of (i) the mechanical force required to pull a gastropod body from its shell and (ii) the maximum corresponding force that can be generated by different hermit crab species' chelipeds.  相似文献   

11.
Only one study has shown that a hydroid-colonized gastropod shell was a deterrent to predation on hermit crabs. In the present study, the hydroid-colonized shell protected the hermit crab Paguruspollicaris Say from the shell-crushing stone crab Menippe mercenaria (Say) and the non-shell-crushing octopus Octopus joubini Robson. The shell-crushing calico crab Hepatus epheliticus (Johansson) was not deterred, however, by a hydroid-colonized shell.  相似文献   

12.
The epifauna on gastropod shells occupied by the hermit crabs Pagurus pollicaris (Say) and P. longicarpus (Say) was examined, as was the utilization of shells by these two hermit crabs. In the study area in Tampa Bay, Florida, shells were not a limiting factor to the hermit crab population, and there apparently was little competition for shells. Interspecific competition for shells was limited because the two hermit crab species differed in size and hence occupied shells of different sizes. The total number and density of most epifaunal species were higher on shells occupied by hermit crabs than on unoccupied shells, possibly because hermit crabs prevent their shells from being buried and hence lengthen the time the epifaunal community can grow and develop. The hermit crab species also appeared to affect the epifaunal community, for the total number and density of most epifaunal species were larger on shells occupied by P. pollicaris than P. longicarpus. With increasing shell size, the populations of most epifaunal species, also were larger but not their density. Least influential in affecting the epifaunal community was the species of shells.  相似文献   

13.
Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to δ15 N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in δ15 N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in structuring communities than predation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Gastropod shells are vital for the majority of hermit crab species, being essential for their survival, growth, protection, and reproduction. Given their importance, shells are acquired and transferred between crabs through several modalities. We conducted observations and experiments at the Asinara Island (Sardinia, Italy) to investigate the efficacy of the different behavioral tactics adopted by the hermit crab Clibanarius erythropus to acquire shells, such as: (1) locomotion and activity at different tidal phases; (2) attendance at shell-supplying sites (simulated predation sites with five different odors: live and dead gastropods, live and dead crabs, predator); and (3) interactions with conspecifics in aggregations on simulated gastropod predation sites. In each tidal phase, locomotion was slow (0.7 cm min− 1) and, as a consequence, the probability of encountering empty shells and conspecifics was low. Simulated gastropod predation sites quickly attracted a larger number of hermit crabs than the other sites tested. Aggregations seemed to function as shell exchange markets, as previously suggested for other species: the first attendant took the experimental shell and a chain of shell exchanges among conspecifics followed. Our results show that, in C. erythropus, aggregation is the most efficient tactic for the acquisition of new shells, whereas in other species, such as Pagurus longicarpus, it is associated with exploitation ability due to the intense locomotion. The interspecific plasticity in hermit crabs' behavior is confirmed.  相似文献   

15.
Hermit crabs, humans and Mozambique mangroves   总被引:1,自引:0,他引:1  
There is a complex interrelationship between upper shore hermit crabs (such as Coenobita sp. and Clibanarius sp.), coastal human populations and mangrove forests in Mozambique. The abundance, activity, shell selection and behaviour of three species of hermit crab are related to the level of mangrove cover. With increased density of mangrove trees, the study species of hermit crab changed in abundance, tended to become diurnal, spent more time feeding and were clustered in larger groups when doing so, and selected longer spired shells. All five of the same variables are also linked to the proximity and activity of humans through both direct and indirect actions. Direct effects included a tendency to nocturnal activity with proximity to human activity; indirect effects included increased and more clumped food supplies, and shell middens from intertidal harvesting and deforestation. Mangroves are important to local human populations as well as to hermit crabs, for a wide variety of (similar) reasons. Mangroves provide storm shelter, fisheries and fishery nursery grounds for adjacent human settlements, but they also harbour mosquito populations and their removal provides valuable building materials and fuel. Hermit crabs may be useful (indirectly) to coastal human populations by being a source of food to certain commercial species, and by quickly consuming rotting/discarded food and faeces (thereby reducing disease and pests). They can also cause minor problems to coastal human populations because they use shells of (fisheries) target mollusc species and can be more abundant than the living molluscs, thereby slowing down effective hand collection through confusion over identification. The mixture of positive and negative attributes that the three groups impart to each other in the Quirimba Archipelago, northern Mozambique, is discussed.  相似文献   

16.
Gastropod shells: A potentially limiting resource for hermit crabs   总被引:1,自引:0,他引:1  
The availability of gastropod shells to hermit crabs in the Newport River Estuary, Beaufort, N.C. has been assessed by determining the numbers of usuable shells occurring in characteristic subtidal habitats and by measuring shell size adequacy. The proportion of useable shells occupied by hermit crabs ranged from 58–99 % and many of the shells not used by hermit crabs were judged unavailable because they were occupied by sipunculids or only uncovered by the dredge. The shell adequacy index (shell size occupied/shell size preferred) was significantly below 1.0 for the largest species (Pagurus pollicaris Say) in the one location where sufficient numbers were collected and for the next largest species (P. longicarpus Say) in three of the four locations where it was collected. The shell size adequacy index for the smallest species (P. annulipes Stimpson) did not differ significantly from 1.0 in either of the two locations in which it was found. These observations suggest that the availability of gastropod shells plays a significant rôle in limiting the abundance of at least the larger hermit crabs.  相似文献   

17.
Vacancy chain theory describes a unique mechanism for the sequential distribution of animal resources across multiple individuals. This theory applies to any resources, such as shelters or nest sites, that are discrete, reusable, and limited in use to single individuals or groups at one time. Hermit crabs rely on gastropod shells for shelter, and a single vacant shell can initiate a chain of sequential shell switches that distributes new resources across many individuals. Using the terrestrial hermit crab Coenobita clypeatus , we examined the previously untested theoretical prediction that this process will yield trickle-down resource benefits to vacancy chain participants (aggregate benefits). In laboratory experiments, we measured improvements in shell quality when a single vacant shell was provided to groups of eight crabs. We found that crabs participating in vacancy chains (averaging 3.2 individuals) gained significant reductions in their shell crowding. In addition, vacancy chains terminated early when experimental groups included a single crab occupying a damaged shell, because damaged vacancies always remained unoccupied. Hermit crabs in damaged shells were more likely to win resource contests for high quality shells against size-matched hermit crabs in crowded shells. Finally, field additions of many new shells to an island population of C. clypeatus hermit crabs reduced average shell crowding for crabs of all sizes, possibly from propagation of benefits through vacancy chains. These results provide empirical support for the theoretical prediction that vacancy chains should provide benefits distributed across many vacancy chain participants. Since shelter-based vacancy chains likely occur in other animals, additional studies of vacancy chain processes should provide new insights into resource acquisition behaviors in diverse animal groups.  相似文献   

18.
Experimental analyses of hermit crabs and their preferences for shells are essential to understand the intrinsic relationship of the crabs' dependence on shells, and may be useful to explain their shell use pattern in nature. The aim of this study was to evaluate the effect of crab species and site on the pattern of shell use, selection, and preference in the south-western Atlantic hermit crabs Pagurus brevidactylus and Pagurus criniticornis, comparing sympatric and allopatric populations. Differently from the traditional approach to evaluate shell preference by simply determining the shell selection pattern (i.e., the number of shells of each type selected), preference was defined (according to [Liszka, D., Underwood, A.J., 1990. An experimental design to determine preferences for gastropod shells by a hermit-crab. J. Exp. Mar. Biol. Ecol., 137(1), 47–62]) by the comparison of the number of crabs changing for a particular shell type when three options were given (Cerithium atratum, Morula nodulosa, and Tegula viridula) with the number of crabs changing for this same type when only this type was offered. The effect of crab species was tested at Cabelo Gordo Beach, where P. brevidactylus was found occupying shells of C. atratum, M. nodulosa, and T. viridula in similar frequencies, whereas P. criniticornis occupied predominantly shells of C. atratum. In laboratory experiments the selection patterns of the two hermit-crab species for these three gastropods were different, with P. criniticornis selecting mainly shells of C. atratum, and P. brevidactylus selecting more shells of M. nodulosa. The shell preference was also dependent on crab species, with P. criniticornis showing a clear preference for shells of C. atratum, whereas P. brevidactylus did not show a preference for any of the tested shells. The effect of site was tested for the two species comparing data from Cabelo Gordo to Preta (P. brevidactylus) and Araçá beaches (P. criniticornis). The pattern of shell use, selection, and preference was demonstrated to be dependent on site only for P. brevidactylus. The results also showed that the shell use pattern of P. criniticornis can be explained by its preference at both sites, whereas for P. brevidactylus it occurred only at Cabelo Gordo, where the absence of preference was correlated with the similar use of the three gastropod species studied. Finally, the results showed that the shell selection pattern cannot be considered as a measure of shell preference, since it overestimates crab selectivity.  相似文献   

19.
Empirical estimates of selection gradients caused by predators are common, yet no one has quantified how these estimates vary with predator ontogeny. We used logistic regression to investigate how selection on gastropod shell thickness changed with predator size. Only small and medium purple shore crabs (Hemigrapsus nudus) exerted a linear selection gradient for increased shell‐thickness within a single population of the intertidal snail (Littorina subrotundata). The shape of the fitness function for shell thickness was confirmed to be linear for small and medium crabs but was humped for large male crabs, suggesting no directional selection. A second experiment using two prey species to amplify shell thickness differences established that the selection differential on adult snails decreased linearly as crab size increased. We observed differences in size distribution and sex ratios among three natural shore crab populations that may cause spatial and temporal variation in predator‐mediated selection on local snail populations.  相似文献   

20.
Specific chemicals in the environment evoke significant changes in the behavior of many aquatic organisms. We studied in the laboratory whether satiated individuals of the hermit crab, Pagurus longicarpus Say 1817, adjust their investigatory behavior towards an empty, optimal gastropod shell according to differences of chemical context. We also explored to what extent shell investigation by a crab in the same hunger state was affected by occupying an inadequately sized shell. Our results confirmed in part previous findings that crabs can discriminate the odor of freshly dead snails from the odor of freshly dead conspecifics. In the presence of the former odor, crabs inhabiting shells of inadequate size were more responsive and active than those in better-fitting shells. To the contrary, regardless of the quality of the inhabited shell, P. longicarpus remained practically motionless when presented with the odor of freshly dead conspecifics, possibly because the risks of incurring in predators would outweigh the benefits of acquiring a new shell. Unexpectedly, we found that crabs in both types of shell quality exhibited nearly the same behavior in control water, while crabs in adequate shells were more responsive in the presence of food odor. Individuals appeared insensitive to the odor of live snails; indeed, only one hermit crab species has been seen removing living snails from their shells. An intriguing result was that water conditioned by the odors of live conspecifics exerted a strong effect on all the individuals by inducing an intense shell investigation. Our study underlines the central role exerted by chemical detection in hermit crabs' behavior and demonstrates the existence of a complex interplay among chemical context, the physiological state of the animal, and the ecological pressures of the habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号