首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Antisera against chromogranin A, B and C were used to study the distribution of these acidic proteins in bovine endocrine and nervous tissues. The three chromogranins occur together in several endocrine organs (adrenal medulla, anterior pituitary, endocrine pancreas) and in sympathetic ganglion cells. In the posterior pituitary, only chromogranin C and in the intermediate lobe only A and C are found. The parathyroid gland contains only A, and enterochromaffin cells are immunoreactive for A and B. Cells of the thyroid gland and some cells of the anterior pituitary apparently do not contain any chromogranins. It is concluded that the three chromogranins are not always stored together and that they are not present in all endocrine cells. This distinct localization of the chromogranins indicates some special, although still undiscovered, function for these proteins.  相似文献   

2.
Antibodies specific for chromogranin A, B or C have been used to detect immunohistochemically these three anionic proteins. Pancreatic A, B and PP cells, gut argentaffin EC, argyrophil ECL and gastrin G cells, thyroid C cells, parathyroid cells, adrenal medullary cells, pituitary TSH, FSH and LH cells as well as some axons of visceral nerves have been found to react with chromogranin A antibodies. Pancreatic A, gut EC and G, adrenal medullary and pituitary cells as well as some gut nerve fibers showed chromogranin B immunoreactivity. Chromogranin C immunoreactivity has been detected in pancreatic A, pyloric D1, intestinal L, thyroid C, adrenal medullary and pituitary cells, as well as in some gut neurons and nerve fibers. No crossreactivity has been found in immunohistochemical tests between chromogranins A, B or C and costored monoamines or peptide hormones/prohormones, from which chromogranins can be separated by selective extraction during fixation. On both morphological and chemical grounds a relationship seems to exist between chromogranin A and Grimelius' argyrophilia. Sialooligosaccharide chains of chromogranin A and, possibly, chromogranins' phosphoserine/phosphothreonine groups, seem to interact with guanidyl, amino, and/or imidazole groups of non-chromogranin components to form silver complexing sites accounting for granules' argyrophilia, which can be removed or blocked without affecting chromogranin immunoreactivities. The abundant anionic groups of the three proteins should contribute substantially to granules' basophilia, the partly "masked" pattern of which supports the existence of a close interaction of such groups with other components of secretory granules, including monoamines and peptide hormones or prohormones. Chromogranins could play a r?le in hormone postranslational biosynthesis and intragranular packaging.  相似文献   

3.
Bovine chromaffin granules from adrenal medulla contain three acidic secretory proteins: chromogranins A, B, and C. For isolation of these proteins, methods based mainly on high performance liquid chromatography were developed. After removal of contaminating glycoproteins by lectin affinity chromatography, chromogranins were separated by high performance anion-exchange, gel-filtration, and reverse phase liquid chromatography. As a final purification step sodium dodecyl sulfate-gel electrophoresis was performed. Amino acid analysis of isolated bovine chromogranins revealed a similar composition of all three proteins, with glutamic acid being the most prominent amino acid. The methods developed for bovine proteins also proved suitable for isolating rat chromogranins A and B from a transplantable pheochromocytoma. Chromogranin C was not present in sufficient amounts to be isolated from this tissue. The chromogranins purified by these methods were used to raise specific antibodies in rabbits. The use of purified chromogranins together with specific antisera may be valuable in understanding the still undiscovered function of these proteins.  相似文献   

4.
Chromogranin A,B and C immunoreactivities of mammalian endocrine cells   总被引:2,自引:0,他引:2  
Summary Antibodies specific for chromogranin A, B or C have been used to detect immunohistochemically these three anionic proteins. Pancreatic A, B and PP cells, gut argentaffin EC, argyrophil ECL and gastrin G cells, thyroid C cells, parathyroid cells, adrenal medullary cells, pituitary TSH, FSH and LH cells as well as some axons of visceral nerves have been found to react with chromogranin A antibodies. Pancreatic A, gut EC and G, adrenal medullary and pituitary cells as well as some gut nerve fibers showed chromogranin B immunoreactivity. Chromogranin C immunoreactivity has been detected in pancreatic A, pyloric D1, intestinal L, thyroid C, adrenal medullary and pituitary cells, as well as in some gut neurons and nerve fibers. No crossreactivity has been found in immunohistochemical tests between chromogranins A, B or C and costored monoamines or peptide hormones/prohormones, from which chromogranins can be separated by selective extraction during fixation. On both morphological and chemical grounds a relationship seems to exist between chromogranin A and Grimelius' argyrophilia. Sialooligosaccharide chains of chromogranin A and, possibly, chromogranins' phosphoserine/phosphothreonine groups, seem to interact with guanidyl, amino, and/or imidazole groups of non-chromogranin components to form silver complexing sites accounting for granules' argyrophilia, which can be removed or blocked without affecting chromogranin immunoreactivities. The abundant anionic groups of the three proteins should contribute substantially to granules' basophilia, the partly masked pattern of which supports the existence of a close interaction of such groups with other components of secretory granules, including monoamines and peptide hormones or prohormones. Chromogranins could play a role in hormone postranslational biosynthesis and intragranular packaging.  相似文献   

5.
We investigated the co-localization in secretory granules of secretogranins/chromogranins, thyrotropin, and luteinizing hormone in ultra-thin frozen sections of cow anterior pituitary by double immunoelectron microscopy, using specific antibodies and protein A-gold particles of different sizes. The distribution of secretogranin II, chromogranin A, and chromogranin B (secretogranin I) was largely similar. In cells containing secretory granules of relatively small size (100-300 nm) and low electron density (identified as thyrotrophs and gonadotrophs by immunolabeling for the respective hormone) and in cells containing both small (170-250 nm) and large (300-500 nm) secretory granules of low electron density (also identified as gonadotrophs), all three secretogranins/chromogranins were detected in most if not all granules, being co-localized with the hormone. In cells containing both relatively large (400-550 nm), electron-dense granules and small, less electron-dense secretory granules (150-300 nm), identified as somatomammotrophs by double immunolabeling for growth hormone and prolactin, all three secretogranins/chromogranins were predominantly detected in the subpopulation of small, less electron-dense granules containing neither growth hormone nor prolactin. Interestingly, this granule subpopulation of somatomammotrophs was also immunoreactive for thyrotropin and luteinizing hormone. These data show that somatomammotrophs of cow anterior pituitary are highly multihormonal, in that the same cell can produce and store in secretory granules up to four different hormones and, in addition, the three secretogranins/chromogranins. Moreover, selective localization of the secretogranins/chromogranins together with thyrotropin and luteinizing hormone in a subpopulation of secretory granules of somatomammotrophs indicates the preferential co-packaging of the secretogranins/chromogranins and these hormones during secretory granule formation.  相似文献   

6.
To investigate the constituents of the matrix of endocrine secretory granules, we analyzed endocrinoilogically silent ("non-functioning") human pituitary adenomas for the occurrence of the chromogranins/secretogranins (granins), a protein family normally stored together with many different hormones. When five non-functioning pituitary adenomas were analyzed by immunoblotting using polyclonal and monoclonal antibodies specific for individual members of the granin family, chromogranin A was detected in four cases and chromogranin B and secretogranin II were detected in all cases. The cellular distribution of the granins and of various hormones known to be expressed in the anterior pituitary was studied by immunocytochemistry in fixed, frozen tissue sections from five additional adenomas. Of the eight hormones investigated, only thyroid-stimulating hormone, luteinizing hormone, and follicle-stimulating hormone were detected, occurring in only two of the five adenomas. In contrast, granins were found in all five tumors. Chromogranin B and secretogranin II were detected in each of the adenomas in virtually every cell studied, whereas chromogranin A exhibited such a widespread cell distribution in only three adenomas, being focally present in one and absent from the other tumor. The subcellular localization of the granins and the three glycoprotein hormones was investigated by double immunoelectron microscopy. Chromogranin A and chromogranin B were mainly co-localized in secretory granules, whereas secretogranin II was either co-localized with the other two granins or segregated to different secretory granules. When present, glycoprotein hormones were immunodetected in both the secretory granules containing all three granins and those containing mainly secretogranin II. Our data indicate that in non-functioning pituitary adenomas chromogranin A is differentially expressed from chromogranin B and secretogranin II. Moreover, the granins appear to be the most widespread constituents of endocrine secretory granules known, forming the dense-core matrix irrespective of the presence or absence of hormones.  相似文献   

7.
Summary Antisera were raised against synthetic peptides derived from the primary amino acid sequence of human chromogranin B. These antisera recognized in one- and two-dimensional immunoblotting a component previously designated as chromogranin B. In human chromaffin granules, the major endogenous processing product of chromogranin B is formed by proteolytic cleavage of the protein near theC-terminus. Immunohistochemical localizations were obtained with antisera against human chromogranins A and B and against a synthetic peptide corresponding to the B sequence. In human tissues, chromogranin B is co-stored with chromogranin A in the adrenal medulla, the anterior pituitary, parafollicular cells of the thyroid, in some cells of the endocrine pancreas and in some enterochromaffin cells, whereas only chromogranin A is found in the parathyroid gland and enterochromaffin cells of the gastric corpus mucosa. In the nervous system, no immunostaining was observed for chromogranin A and only a weak one for chromogranin B in some cells of the spinal cord. However, the Purkinje cells of the cerebellum were strongly positive for chromogranin B.  相似文献   

8.
We characterized a group of acidic proteins of bovine chromaffin granules with an antiserum raised against a protein described by Rosa and Zanini [Eur. J. Cell Biol. 31, 94-98 (1983)] in pituitary gland. In adrenal medulla the proteins reacting with this antiserum are confined to chromaffin granules. Their largest component has a Mr of 86,000 and a pI of 5.0. In addition six proteins of lower molecular weight are recognized by this antiserum. In a cell-free system only one protein is synthesized that can be precipitated with this antiserum. The properties of these proteins are very similar to those of the previously described chromogranins A and B; however, there is no immunological cross-reaction between these protein groups. We suggest this third group of acidic proteins of chromaffin granules be named chromogranins C.  相似文献   

9.
Summary Experiments were conducted to determine the presence of two cholinergic biomarkers, acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) in the rat pituitary. A histochemical procedure for AChE was used to provide visualization of structures containing this enzyme. Radiochemical methods provided a sensitive assay for measuring ChAT activity. Nerve fibres staining for AChE activity were observed in the neurointermediate lobe, with the greatest concentrations appearing at the junction region with the pituitary stalk. Cells staining for AChE were found in the pars distalis and pars intermedia. ChAT activity correlated well with AChE distribution in pars nervosa and pars intermedia but not in pars distalis. The greatest levels of ChAT activity were in pars intermedia and the region where the stalk joins the pituitary. Significant values were also found for the pars nervosa. The presence of AChE and ChAT in pars intermedia and pars nervosa is evidence for a cholinergic innervation to these regions. In pars distalis, where other investigators have found muscarinic receptors, intense staining for AChE and absence of ChAT activity may indicate non-innervated, acetylcholine-sensitive sites.  相似文献   

10.
In neuropeptidomics, the degradation of a small fraction of abundant proteins overwhelms the low signals from neuropeptides, and many neuropeptides cannot be detected by mass spectrometry without extensive purification. Protein degradation was prevented when mice were sacrificed with focused microwave irradiation, permitting the detection of hypothalamic neuropeptides by mass spectrometry. Here we report an alternative and very simple method utilizing an ordinary microwave oven to inhibit enzymatic degradation. We used this technique to identify brain and pituitary neuropeptides. Quantitative analysis using mass spectrometry in combination with stable isotopic labeling was performed to determine the effect of microwave irradiation on relative levels of neuropeptides and protein degradation fragments. Microwave irradiation greatly reduced the levels of degradation fragments of proteins. In contrast, neuropeptide levels were increased about 2-3 times in hypothalamus by the microwave irradiation but not increased in pituitary. In a second experiment, three brain regions (hypothalamus, hippocampus, and striatum) from microwave-irradiated mice were analyzed. Altogether 41 neuropeptides or fragments of secretory pathway proteins were identified after microwave treatment; some of these are novel. These peptides were derived from 15 proteins: proopiomelanocortin, proSAAS, proenkephalin, preprotachykinins A and B, provasopressin, prooxytocin, melanin-concentrating hormone, proneurotensin, chromogranins A and B, secretogranin II, prohormone convertases 1 and 2, and peptidyl amidating monooxygenase. Although some protein degradation fragments were still found after microwave irradiation, these appear to result from protein breakdown during the extraction and not to an enzymatic reaction during the postmortem period. Two of the protein fragments corresponded to novel protein forms: VAP-33 with a 7-residue N-terminal extension and beta tubulin with a glutathione on the Cys near the N terminus. In conclusion, microwave irradiation with an ordinary microwave oven effectively inhibits enzymatic postmortem protein degradation, increases the recovery of neuropeptides, and makes it possible to conduct neuropeptidomic studies with mouse brain tissues.  相似文献   

11.
We investigated the occurrence and subcellular localization of chromogranins A and B in atrial myoendocrine cells of rat heart, using immunological methods. Immunoblotting revealed the presence of both chromogranin A and B in an extract from large granules isolated from this tissue by subcellular fractionation. Immunohistochemistry at the ultrastructural level demonstrated the presence of chromogranin A and B in secretory granules. These organelles also immunostained for atrial natriuretic peptides (ANP). Within a given section, all granules were labeled with immunogold for these three antigens. This apparent co-localization of the three antigens was confirmed by double immunostaining with immunogold particles of different sizes. We conclude that, in agreement with their endocrine nature, the secretory organelles of rat atria contain both chromogranins A and B. Apparently these acidic peptides, which have a widespread distribution in the endocrine system, are co-stored and therefore also co-secreted with ANP.  相似文献   

12.
Phylogenetic Distribution of Peptides Related to Chromogranins A and B   总被引:3,自引:0,他引:3  
The presence of chromogranin-related peptides in a wide range of species was investigated by one and two-dimensional electrophoresis followed by immunoblotting. Antisera against bovine chromogranins A and B and the peptide WE-14 (chromogranin A316-329) were used. Chromogranins were identified by their heat stability, by their electrophoretic behavior, and by immunological cross-reaction with antisera. In all species investigated ranging from mammals to birds, amphibians, fish, and arthropods, chromogranin A- and B-like proteins could be demonstrated. For all species, there was an immunological cross-reaction with antisera against bovine chromogranins. The molecular sizes and isoelectric points of the chromogranins were similar in all species. The antiserum against WE-14 cross-reacted with pig, rat, and chicken chromogranins. It is concluded that the chromogranins A and B have a widespread phylogenetic distribution with a significant conservation of molecular size, isoelectric points, and immunological epitopes. This is consistent with the concept that these peptides have a specific function.  相似文献   

13.
Summary The pars distalis of the anterior pituitary is known to be regulated by hypothalamic hormones. Recently, we have discovered the presence of substance P-like immunoreactive nerve fibers in the pars distalis of the monkeys. Substance P-like immunoreactivity in the pars distalis of the dog was investigated in this study. A substantial amount of substance P-like immunoreactive nerve fibers with a large amount of varicosities were found. They were widely distributed in the gland, more abundant along its periphery. Most of them were closely related to the glandular tissue, some were located on vascular walls. Substance P-like immunoreactive nerve fibers were also found in the meningeal sheath of the anterior pituitary. They could be followed into the parenchyma of the gland.  相似文献   

14.
The distribution of the endorphins, beta-endorphin and enkephalin (Met5-enkephalin and Leu5-enkephalin), was determined in the pars distalis, intermedia, and nervosa of the rat pituitary using both immunocytochemical and radioimmunological methods. Immunoreactive (ir) beta-endorphin was found in pars distalis and pars intermedia. On gel filtration of the pars distalis extracts, beta-endorphin immunoreactivity was eluted in three peaks corresponding to pro-opiocortin (5%), beta-lipotropin (75%), and beta-endorphin (20%). beta-Endorphin was the only component in the pars intermedia. Enkephalin was found in high amount in the pars nervosa. A new enkephalinergic hypothalamic-pars nervosa pathway was observed. Dehydration experiments on normal rats and analysis of the genetically polyuric Brattleboro rat suggest that this enkephalinergic pathway may modulate neurohypophyseal neurosecretion.  相似文献   

15.
Progestin (P) target cells were identified in the pituitary gland of gonadectomized female rats which had been primed with estrogen (E). P staining was localized using the immunohistochemical avidin-biotin-peroxidase (ABP) complex method. Dark brown precipitates were primarily found over the cytoplasm of cells in the pars distalis, but not in the pars intermedia nor in the pars nervosa. The majority of P-sensitive cells in the pars distalis were identical with luteotrophs, a few being lactotrophs. These observations suggest a role of P in the regulation of production and secretion of gonadotrophins in the pituitary glands of female rats.  相似文献   

16.
The secretory granules of neuroendocrine cells which contain large amounts of Ca(2+) and chromogranins have been demonstrated to release Ca(2+) in response to inositol 1,4,5-trisphosphate (IP(3)). Moreover, chromogranin A (CGA) has been shown to interact with several secretory granule membrane proteins, including the IP(3) receptor (IP(3)R). To determine whether the IP(3)Rs interact directly with chromogranins A and B (CGB), two major proteins of the secretory granules, we have used purified IP(3)R from bovine cerebellum in the interaction study with CGA and CGB, and have shown that chromogranins A and B directly interact with the IP(3)R at the intravesicular pH 5.5. Immunogold cytochemical study using the IP(3)R and CGA antibodies indicated that IP(3)R-labeled gold particles were localized in the periphery of the secretory granules, indicating the presence of the IP(3)Rs on the secretory granule membrane. To determine whether the IP(3)R and chromogranins A and B are physically linked in the cells, bovine type 1 IP(3)R (IP(3)R-1) and CGA or CGB are co-transfected into COS-7 cells and co-immunoprecipitation was carried out. Immunoprecipitation of the cell extracts demonstrated the presence of CGA-IP(3)R-1 and CGB-IP(3)R-1 complexes, respectively, indicating the complex formation between the IP(3)R and chromogranins A and B in native state.  相似文献   

17.
Summary Immunoreactivity to gonadotropin-releasing hormone (GnRH) and gonadotropic hormone (GTH) was studied at the light-microscopical level in the brain and pituitary of rainbow trout at different stages of the first reproductive cycle using antisera against synthetic mammalian GnRH and salmon GTH. GnRH perikarya were localized exclusively in the preoptic nucleus, both in the pars parvicellularis and the pars magnocellularis. A few somata contacted the cerebrospinal fluid. Not all neurosecretory cells were GnRH-positive, indicating at least a bifunctionality of the preoptic nucleus. We recorded no differences between sexes or stages of gonadal development in the location of GnRH perikarya, whereas gradual changes were found in staining intensity during the reproductive cycle. GnRH fibres ran from the partes parvicellularis and magnocellularis through the hypothalamus and merged into a common tract at the transverse commissure before entering the pituitary. In the pituitary, GnRH was localized in the neural tissue of the neurointermediate lobe and, to a lesser extent, in the neural protrusions penetrating the proximal pars distalis. The bulk of GTH-positive cells was situated in the proximal pars distalis. Some cells were found more rostrally amidst prolactin cells or in the neurointermediate lobe. Only a limited number of GTH cells appeared to be in close contact with GnRH-positive material.  相似文献   

18.
Chromogranins are the main soluble proteins in the large dense core secretory vesicles (LDCVs) found in aminergic neurons and chromaffin cells. We recently demonstrated that chromogranins A and B each regulate the concentration of adrenaline in chromaffin granules and its exocytosis. Here we have further studied the role played by these proteins by generating mice lacking both chromogranins. Surprisingly, these animals are both viable and fertile. Although chromogranins are thought to be essential for their biogenesis, LDCVs were evident in these mice. These vesicles do have a somewhat atypical appearance and larger size. Despite their increased size, single-cell amperometry recordings from chromaffin cells showed that the amine content in these vesicles is reduced by half. These data demonstrate that although chromogranins regulate the amine concentration in LDCVs, they are not completely essential, and other proteins unrelated to neurosecretion, such as fibrinogen, might compensate for their loss to ensure that vesicles are generated and the secretory pathway conserved.  相似文献   

19.
The localization and identification of the target cells for estradiol (E2) and dihydrotestosterone (DHT) were studied in the pituitary gland of male and female baboons (Papio cynocephalus) using autoradiography and autoradiography combined with immunocytochemistry. The largest number of cells which sequestered 3H-E2 were located in the pars distalis of both the males and females. Immunocytochemistry revealed that these target cells were predominantly gonadotrophs and mammotrophs, albeit a few somatotrophs and thyrotrophs were also labeled. A distinct sexual dimorphism was not observed with respect to the uptake and retention of the tritiated estrogen but was clearly evident in those animals given 3H-DHT. Significantly more cells in all three lobes of the male baboon, the partes distalis, intermedia and nervosa, concentrated the radiolabeled androgen as compared to that found in the females. Regardless of sex, however, the gonadotrophs were the major cell type in the pars distalis which was labeled. A small population of mammotrophs, somatotrophs and thyrotrophs also retained 3H-DHT. In both males and females, the pars nervosa was the portion of the hypophysis most sensitive to 3H-DHT. These findings indicate that all three lobes of the hypophysis of the male and female baboon contain target cells for E2 and DHT and that the propensity for DHT uptake is greater in males than in females.  相似文献   

20.
The stress-related corticotropin-releasing hormone (CRH) was first identified by isolation of its cDNA from the brain of the Japanese eel Anguilla japonica. CRH cDNA encodes a signal peptide, a cryptic peptide and CRH (41 amino acids). The sequence homology to mammalian CRH is high. Next, the distribution of CRH-immunoreactive (ir) cell bodies and fibers in the brain and pituitary were examined by immunohistochemistry. CRH-ir cell bodies were detected in several brain regions, e.g., nucleus preopticus pars magnocellularis, nucleus preopticus pars gigantocellularis and formatio reticularis superius. In the brain, CRH-ir fibers were distributed not only in the hypothalamus but also in various regions. Some CRH-ir fibers projected to adrenocorticotropic hormone (ACTH) cells in the rostral pars distalis of the pituitary and also the α-melanocyte-stimulating hormone (α-MSH) cells in the pars intermedia of the pituitary. Finally, the neuroanatomical relationship between the CRH neurons and gonadotropin-releasing hormone (GnRH) neurons was examined by dual-label immunohistochemistry. CRH-ir fibers were found to be in close contact with GnRH-ir cell bodies in the hypothalamus and in the midbrain tegmentum and GnRH-ir fibers were in close contact with CRH-ir cell bodies in the nucleus preopticus pars magnocellularis. These results suggest that CRH has some physiological functions other than the stimulation of ACTH and α-MSH secretion and that reciprocal connections may exist between the CRH neurons and GnRH neurons in the brain of the Japanese eel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号