首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammary glands are physiologically active in female mammals only during nursing. Immediately after weaning, most lactation-related genes are downregulated and milk production ceases. In our previous study, we have detected an inwardly rectifying potassium channel (Kir) 2.1-like current in mammary secretory (MS) cells freshly isolated from lactating mice. This current is highly sensitive to external Ba2+. The potassium permeability of the Kir channels may contribute to the secretion and/or preservation of ions in milk. We hypothesized that the functions of the Kir channels in MS cells are regulated after weaning. To test this hypothesis, we examined the effect of forced weaning on the Ba2+-sensitive Kir current and Kir2.1 expression in the mouse mammary glands. Twenty-four hours after weaning, the lumina of mammary acini were histologically enlarged by milk accumulation. The whole-cell patch-clamp analyses showed that the Ba2+-sensitive Kir current in the post-weaning MS cells was smaller than in the lactating MS cells. The inward conductances of the current in the lactating and post-weaning cells were 4.25 ± 0.77 and 0.93 ± 0.34 nS, respectively. Furthermore, real-time PCR and Western blot analyses showed that Kir2.1 mRNA and protein expression decreased in the post-weaning mammary gland (mRNA, 90% reduction; protein, 47% reduction). Moreover, the local milk accumulation caused by teat sealing decreased Kir conductance in MS cells (2.74 ± 0.45 and 0.36 ± 0.27 nS for control and sealed mammary glands, respectively). This was concomitant with the reduction in the Kir2.1 mRNA expression. Our results suggest that milk stasis after weaning immediately decreases the Kir conductance in MS cells. This decrease in the Kir conductance may be partly caused by the reduction in the Kir2.1 mRNA and protein expression. These alterations during the post-weaning period may be involved in the cessation of ion secretion and/or preservation in the milk.  相似文献   

2.
Inward rectifier K+ channels (Kir) are a significant determinant of endothelial cell (EC) membrane potential, which plays an important role in endothelium-dependent vasodilatation. In the present study, several complementary strategies were applied to determine the Kir2 subunit composition of human aortic endothelial cells (HAECs). Expression levels of Kir2.1, Kir2.2, and Kir2.4 mRNA were similar, whereas Kir2.3 mRNA expression was significantly weaker. Western blot analysis showed clear Kir2.1 and Kir2.2 protein expression, but Kir2.3 protein was undetectable. Functional analysis of endothelial inward rectifier K+ current (IK) demonstrated that 1) IK current sensitivity to Ba2+ and pH were consistent with currents determined using Kir2.1 and Kir2.2 but not Kir2.3 and Kir2.4, and 2) unitary conductance distributions showed two prominent peaks corresponding to known unitary conductances of Kir2.1 and Kir2.2 channels with a ratio of 4:6. When HAECs were transfected with dominant-negative (dn)Kir2.x mutants, endogenous current was reduced 50% by dnKir2.1 and 85% by dnKir2.2, whereas no significant effect was observed with dnKir2.3 or dnKir2.4. These studies suggest that Kir2.2 and Kir2.1 are primary determinants of endogenous K+ conductance in HAECs under resting conditions and that Kir2.2 provides the dominant conductance in these cells. potassium channels; inward rectifier potassium channel  相似文献   

3.
Interstitial cystitis (IC) is an idiopathic hypersensory condition of the bladder associated with increased urinary ATP and increased stretch-activated ATP release by bladder urothelial cells (BUCs), suggesting augmented purinergic signaling in the bladder. To test this theory further, monolayers of cultured BUCs derived from bladder biopsies obtained from patients with IC and control patients were stimulated with 10-30 microM ATP with subsequent measurement of extracellular ATP levels using the luciferin-luciferase assay. Stimulation with 30 microM ATP resulted in IC supernatant containing several-fold more ATP than control BUCs initially, followed by a slower decrease in ATP levels. This difference in ATP levels was not completely due to activity of cellular ecto-ATPase, because blockade with ARL67156 did not normalize the difference. Exposure to hypotonic solutions resulted in similar extracellular ATP concentrations in IC and control BUCs, but there was a slower decrease in ATP levels in IC supernatants. Treatment of IC BUCs with 10-40 microM suramin, a nonspecific P2 receptor antagonist, significantly attenuated the IC BUC response to extracellular ATP, restoring IC BUCs to a control phenotype. Pretreatment of IC BUCs with 20 ng/ml of heparin-binding EGF-like growth factor (HB-EGF), which previously has been shown to be decreased in IC urine specimens, also restored IC BUCs to a control phenotype with respect to response to ATP stimulation. In conclusion, IC BUCs have augmented extracellular ATP signaling that could be blocked by suramin and HB-EGF. These findings suggest the possible development of future novel therapeutic techniques.  相似文献   

4.
Inward-rectifier K channel: using macroscopic voltage clamp and single- channel patch clamp techniques we have identified the K+ channel responsible for potassium recycling across basolateral membranes (BLM) of principal cells in intact epithelia isolated from frog skin. The spontaneously active K+ channel is an inward rectifier (Kir) and is the major component of macroscopic conductance of intact cells. The current- voltage relationship of BLM in intact cells of isolated epithelia, mounted in miniature Ussing chambers (bathed on apical and basolateral sides in normal amphibian Ringer solution), showed pronounced inward rectification which was K(+)-dependent and inhibited by Ba2+, H+, and quinidine. A 15-pS Kir channel was the only type of K(+)-selective channel found in BLM in cell-attached membrane patches bathed in physiological solutions. Although the channel behaves as an inward rectifier, it conducts outward current (K+ exit from the cell) with a very high open probability (Po = 0.74-1.0) at membrane potentials less negative than the Nernst potential for K+. The Kir channel was transformed to a pure inward rectifier (no outward current) in cell- attached membranes when the patch pipette contained 120 mM KCl Ringer solution (normal NaCl Ringer in bath). Inward rectification is caused by Mg2+ block of outward current and the single-channel current-voltage relation was linear when Mg2+ was removed from the cytosolic side. Whole-cell current-voltage relations of isolated principal cells were also inwardly rectified. Power density spectra of ensemble current noise could be fit by a single Lorentzian function, which displayed a K dependence indicative of spontaneously fluctuating Kir channels. Conclusions: under physiological ionic gradients, a 15-pS inward- rectifier K+ channel generates the resting BLM conductance in principal cells and recycles potassium in parallel with the Na+/K+ ATPase pump.  相似文献   

5.
We recently reported that zacopride is a selective inward rectifier potassium current (IK1 ) channel agonist, suppressing ventricular arrhythmias without affecting atrial arrhythmias. The present study aimed to investigate the unique pharmacological properties of zacopride. The whole-cell patch-clamp technique was used to study IK1 currents in rat atrial myocytes and Kir2.x currents in human embryonic kidney (HEK)-293 cells transfected with inward rectifier potassium channel (Kir)2.1, Kir2.2, Kir2.3, or mutated Kir2.1 (at phosphorylation site S425L). Western immunoblots were performed to estimate the relative protein expression levels of Kir2.x in rat atria and ventricles. Results showed that zacopride did not affect the IK1 and transmembrane potential of atrial myocytes. In HEK293 cells, zacopride increased Kir2.1 homomeric channels by 40.7%±9.7% at 50 mV, but did not affect Kir2.2 and Kir2.3 homomeric channels, and Kir2.1-Kir2.2, Kir2.1-Kir2.3 and Kir2.2-Kir2.3 heteromeric channels. Western immunoblots showed that similar levels of Kir2.3 protein were expressed in rat atria and ventricles, but atrial Kir2.1 protein level was only 25% of that measured in the ventricle. In addition, 5-hydroxytryptamine (5-HT) 3 receptor was undetectable, whereas 5-HT 4 receptor was weakly expressed in HEK293 cells. The Kir2.1-activating effect of zacopride in these cells was abolished by inhibition of protein kinase A (PKA), but not PKC or PKG. Furthermore, zacopride did not activate the mutant Kir2.1 channel in HEK293 cells but selectively activated the Kir2.1 homomeric channel via a PKA-dependent pathway, independent to that of the 5-HT receptor.  相似文献   

6.
The inward rectifier K(+) channel Kir2.1 mediates the potassium I(K1) current in the heart. It is encoded by KCNJ2 gene that has been linked to Andersen's syndrome. Recently, strong evidences showed that Kir2.1 channels were associated with mouse atrial fibrillation (AF), therefore we hypothesized that KCNJ2 was associated with familial AF. Thirty Chinese AF kindreds were evaluated for mutations in KCNJ2 gene. A valine-to-isoleucine mutation at position 93 (V93I) of Kir2.1 was found in all affected members in one kindred. This valine and its flanking sequence is highly conserved in Kir2.1 proteins among different species. Functional analysis of the V93I mutant demonstrated a gain-of-function consequence on the Kir2.1 current. This effect is opposed to the loss-of-function effect of previously reported mutations in Andersen's syndrome. Kir2.1 V93I mutation may play a role in initiating and/or maintaining AF by increasing the activity of the inward rectifier K(+) channel.  相似文献   

7.
Potassium conduction through unblocked inwardly rectifying (IRK1, Kir2.1) potassium channels was measured in inside-out-patches from Xenopus oocytes, after removal of polyamine-induced strong inward rectification. Unblocked IRK1 channel current-voltage (I-V) relations show very mild inward rectification in symmetrical solutions, are linearized in nonsymmetrical solutions that bring the K+ reversal potential to extreme negative values, and follow Goldman-Hodgkin-Katz constant field equation at extreme positive E alpha. When intracellular K+ concentration (KIN) was varied, at constant extracellular K+ concentration (KOUT) the conductance at the reversal potential (GREV) followed closely the predictions of the Goldman-Hodgkin-Katz constant field equation at low concentrations and saturated sharply at concentrations of > 150 mM. Similarly, when KOUT was varied, at constant KIN, GREV saturated at concentrations of > 150 mM. A square-root dependence of conductance on KOUT is a well-known property of inward rectifier potassium channels and is a property of the open channel. A nonsymmetrical two-site three-barrier model can qualitatively explain both the I-V relations and the [K+] dependence of conductance of open IRK1 (Kir2.1) channels.  相似文献   

8.
It is known that rectification of currents through the inward rectifier K(+) channel (Kir) is mainly due to blockade of the outward current by cytoplasmic Mg(2+) and polyamines. Analyses of the crystal structure of the cytoplasmic region of Kir2.1 have revealed the presence of both negatively (E224, D255, D259, and E299) and positively (R228 and R260) charged residues on the wall of the cytoplasmic pore of Kir2.1, but the detail is not known about the contribution of these charged residues, the positive charges in particular, to the inward rectification. We therefore analyzed the functional significance of these charged amino acids using single/double point mutants in order to better understand the structure-based mechanism underlying inward rectification of Kir2.1 currents. As a first step, we used two-electrode voltage clamp to examine inward rectification in systematically prepared mutants in which one or two negatively or positively charged amino acids were neutralized by substitution. We found that the intensity of the inward rectification tended to be determined by the net negative charge within the cytoplasmic pore. We then used inside-out excised patch clamp recording to analyze the effect of the mutations on blockade by intracellular blockers and on K(+) permeation. We observed that a decrease in the net negative charge within the cytoplasmic pore reduced both the susceptibility of the channel to blockade by Mg(2+) or spermine and the voltage dependence of the blockade. It also reduced K(+) permeation; i.e., it decreased single channel conductance, increased open-channel noise, and strengthened the intrinsic inward rectification in the total absence of cytoplasmic blockers. Taken together, these data suggest that the negatively charged cytoplasmic pore of Kir electrostatically gathers cations such as Mg(2+), spermine, and K(+) so that the transmembrane pore is sufficiently filled with K(+) ions, which enables strong voltage-dependent blockade with adequate outward K(+) conductance.  相似文献   

9.
10.
An E224G mutation of the Kir2.1 channel generates intrinsic inward rectification and single-channel fluctuations in the absence of intracellular blockers. In this study, we showed that positively charged residues H226, R228 and R260, near site 224, regulated the intrinsic inward rectification and single-channel properties of the E224G mutant. By carrying out systematic mutations, we found that the charge effect on the intrinsic inward rectification and single-channel conductance is consistent with a long-range electrostatic mechanism. A Kir1.1 channel where the site equivalent to E224 in the Kir2.1 channel is a glycine residue does not show inward rectification or single-channel fluctuations. The G223K and N259R mutations of the Kir1.1 channel induced intrinsic inward rectification and reduced the single-channel conductance but did not generate large open-channel fluctuations. Substituting the cytoplasmic pore of the E224G mutant into the Kir1.1 channel induced open-channel fluctuations and intrinsic inward rectification. The single-channel conductance of the E224G mutant showed inward rectification. Also, a voltage-dependent gating mechanism decreased open probability during depolarization and contributed to the intrinsic inward rectification in the E224G mutant. In addition to an electrostatic effect, a close interaction of K+ with channel pore may be required for generating open-channel fluctuations in the E224G mutant.  相似文献   

11.
Tyrosine side chains participate in several distinct signaling pathways, including phosphorylation and membrane trafficking. A nonsense suppression procedure was used to incorporate a caged tyrosine residue in place of the natural tyrosine at position 242 of the inward rectifier channel Kir2.1 expressed in Xenopus oocytes. When tyrosine kinases were active, flash decaging led both to decreased K(+) currents and also to substantial (15-26%) decreases in capacitance, implying net membrane endocytosis. A dominant negative dynamin mutant completely blocked the decaging-induced endocytosis and partially blocked the decaging-induced K(+) channel inhibition. Thus, decaging of a single tyrosine residue in a single species of membrane protein leads to massive clathrin-mediated endocytosis; in fact, membrane area equivalent to many clathrin-coated vesicles is withdrawn from the oocyte surface for each Kir2.1 channel inhibited. Oocyte membrane proteins were also labeled with the thiol-reactive fluorophore tetramethylrhodamine-5-maleimide, and manipulations that decreased capacitance also decreased surface membrane fluorescence, confirming the net endocytosis. In single-channel studies, tyrosine kinase activation decreased the membrane density of active Kir2.1 channels per patch but did not change channel conductance or open probability, in agreement with the hypothesis that tyrosine phosphorylation results in endocytosis of Kir2.1 channels. Despite the Kir2.1 inhibition and endocytosis stimulated by tyrosine kinase activation, neither Western blotting nor (32)P labeling produced evidence for direct tyrosine phosphorylation of Kir2.1. Therefore, it is likely that tyrosine phosphorylation affects Kir2.1 function indirectly, via interactions between clathrin adaptor proteins and a tyrosine-based sorting motif on Kir2.1 that is revealed by decaging the tyrosine side chain. These interactions inhibit a fraction of the Kir2.1 channels, possibly via direct occlusion of the conduction pathway, and also lead to endocytosis, which further decreases Kir2.1 currents. These data establish that side chain decaging can provide valuable time-resolved data about intracellular signaling systems.  相似文献   

12.
Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir) play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs) that was regulated by the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-β-S and choleratoxin suggested that currents weren’t determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems.  相似文献   

13.
The inward rectifier potassium channel, Kir2.1, contributes to the I(K1) current in cardiac myocytes and is closely associated with atrial fibrillation. Strong evidences have shown that atrial dilatation or stretch may result in atrial fibrillation. However, the role of Kir2.1 channels in the stretch-mediated atrial fibrillation is not clear. In this study, we constructed the recombinant plasmid of KCNJ2 that encodes the Kir2.1 channel and expressed it in CHO-K1 cells. We recorded I(K1) currents using the whole-cell patch clamping technique. Our data showed that I(K1) currents were significantly larger under stretch in the hypotonic solution than under non-stretch in the iso-osmotic solution, and the activation kinetics of the Kir2.1 channel were changed markedly by stretch as well. Thus, atrial stretch in human heart might result in excessive I(K1) currents, which is likely to increase the resting membrane potential and decrease the effective refractory period, to initiate and/or maintain atrial fibrillation.  相似文献   

14.
Andersen's syndrome is characterized by periodic paralysis, cardiac arrhythmias, and dysmorphic features. We have mapped an Andersen's locus to chromosome 17q23 near the inward rectifying potassium channel gene KCNJ2. A missense mutation in KCNJ2 (encoding D71V) was identified in the linked family. Eight additional mutations were identified in unrelated patients. Expression of two of these mutations in Xenopus oocytes revealed loss of function and a dominant negative effect in Kir2.1 current as assayed by voltage-clamp. We conclude that mutations in Kir2.1 cause Andersen's syndrome. These findings suggest that Kir2.1 plays an important role in developmental signaling in addition to its previously recognized function in controlling cell excitability in skeletal muscle and heart.  相似文献   

15.
The Kir1.1 (ROMK) subtypes of inward rectifier K+ channels mediate potassium secretion and regulate sodium chloride reabsorption in the kidney. The density of ROMK channels on the cortical collecting duct apical membrane is exquisitely regulated in concert with physiological demands. Although protein kinase A-dependent phosphorylation of one of the three phospho-acceptors in Kir1.1, Ser-44, also a canonical serum-glucocorticoid-regulated kinase (SGK-1) phosphorylation site, controls the number of active channels, it is unknown whether this involves activating dormant channels already residing on the plasma membrane or recruiting new channels to the cell surface. Here we explore the mechanism and test whether SGK-1 phosphorylation of ROMK regulates cell surface expression. Removal of the phosphorylation site by point mutation (Kir1.1, S44A) dramatically attenuated the macroscopic current density in Xenopus oocytes. As measured by antibody binding of external epitope-tagged forms of Kir1.1, surface expression of Kir1.1 S44A was inhibited, paralleling the reduction in macroscopic current. In contrast, surface expression and macroscopic current density was augmented by a phosphorylation mimic mutation, Kir1.1 S44D. In vitro phosphorylation assays revealed that Ser-44 is a substrate of SGK-1 phosphorylation, and expression of SGK-1 with the wild type channel increased channel density to the same level as the phosphorylation mimic mutation. Moreover, the stimulatory effect of SGK-1 was completely abrogated by mutation of the phosphorylation site. In conclusion, SGK-1 phosphorylation of Kir1.1 drives expression on the plasmalemma. Because SGK-1 is an early aldosterone-induced gene, our results suggest a possible molecular mechanism for aldosterone-dependent regulation of the secretory potassium channel in the kidney.  相似文献   

16.
In all secreted proteins related to the epidermal growth factor (EGF), EGF domains that occur in a mature factor are each encoded by two exons, and those that do not, by one exon. During splicing, additional exon 3a can be inserted between exons 3 and 4, which code for the EGF domain of the mature heparin-binding EGF-like growth factor (HB-EGF). The resulting mRNA codes for the short form of HB-EGF (SF HB-EGF), which retains the signal peptide, the propeptide, and the heparin-binding domain. However, its EGF domain lacks the C-terminal subdomain essential for the interaction with the EGF receptor (EGFR). Structural analysis suggested that SF HB-EGF is a secreted polypeptide that has high affinity for heparin, but weakly, if at all, interacts with EGFR. Data obtained in three different systems indicated that SF HB-EGF possesses a mitogenic activity but utilizes a signal transduction pathway other than that of HB-EGF.  相似文献   

17.
In all secreted proteins related to the epidermal growth factor (EGF), EGF domains that occur in a mature factor are each encoded by two exons, and those that do not, by one exon. During splicing, additional exon 3a can be inserted between exons 3 and 4, which code for the EGF domain of the mature heparin-binding EGF-like growth factor (HB-EGF). The resulting mRNA codes for the short form of HB-EGF (SF HB-EGF), which retains the signal peptide, the propeptide, and the heparin-binding domain. However, its EGF domain lacks the C-terminal subdomain essential for the interaction with the EGF receptor (EGFR). Structural analysis suggested that SF HB-EGF is a secreted polypeptide that has high affinity for heparin but weakly, if at all, interacts with EGFR. Data obtained in three different systems indicated that SF HB-EGF possesses a mitogenic activity but utilizes a signal transduction pathway other than that of HB-EGF.  相似文献   

18.
Heparin-binding EGF-like growth factor (HB-EGF), which belongs to the EGF-family of growth factors, was isolated from the conditioned medium of macrophage-like cells. To investigate the effect of N- and C-terminal residues of the EGF-like domain of HB-EGF in the binding affinity to the EGF receptor on A431 cell. We synthesized HB-EGF(44-86) corresponding to the EGF-like domain of HB-EGF and its N- or C-terminal truncated peptides. Thermolytic digestion demonstrated three disulfide bond pairings of the EGF-like domain in HB-EGF is consistent with that of human-EGF and human-TGF-alpha. HB-EGF(44-86) showed high binding affinity to EGF-receptor, like human-EGF. The truncation of the C-terminal Leu86 residue from HB-EGF(44-86), HB-EGF(45-86) or HB-EGF(46-86) caused a drastic reduction in the binding affinity to the EGF receptor. These results suggest that the EGF-like domain of HB-EGF plays an important role in the binding to the EGF receptor, and its C-terminal Leu86 residue is necessary for binding with the EGF-receptor. In addition, the deletion of the two N-terminal residues (Asp44-Pro45) from HB-EGF(44-86) caused a 10-fold decrease in relative binding affinity to the EGF receptor. This indicates that the two N-terminal residues of the EGF-like domain of HB-EGF are necessary for its optimal binding affinity to the EGF receptor.  相似文献   

19.
The inward rectifier current generated by Kir2.1 ion channel proteins is primarily responsible for the stable resting membrane potential in various excitable cell types, like neurons and myocytes. Tight regulation of Kir2.1 functioning prevents premature action potential formation and ensures optimal repolarization times. While Kir2.1 forward trafficking has been addressed in a number of studies, its degradation pathways are thus far unknown. Using three different lysosomal inhibitors, NH4Cl, chloroquine and leupeptin, we now demonstrate involvement of the lysosomal degradation pathway in Kir2.1 breakdown. Upon application of the inhibitors, increased steady state protein levels are detectable within few hours coinciding with intracellular granular Kir2.1 accumulation. Treatment for 24 h with either chloroquine or leupeptin results in increased plasmamembrane originating inward rectifier current densities, while current-voltage characteristics remain unaltered. We conclude that the lysosomal degradation pathway contributes to Kir2.1 mediated inward rectifier current regulation.  相似文献   

20.
The strong inward rectification of Kir2.1 currents is reportedly due to blockade of the outward current by cytoplasmic magnesium (Mg(2+)(i)) and polyamines, and is known to be determined in part by three negatively charged amino acid residues: Asp172, Glu224, and Glu299 (D172, E224, E299). Our aim was to identify additional sites contributing to the inward rectification of Kir2.1 currents. To accomplish this, we introduced into wild-type Kir2.1 and its D172N and D172N & E224G & E299S mutants various point mutations selected on the basis of a comparison of the sequences of Kir2.1 and the weak rectifier sWIRK. By analyzing macroscopic currents recorded from Xenopus oocytes using two-electrode voltage clamp, we determined that S165L mutation decreases inward rectification, especially with the triple mutant. The susceptibility to blockade by intracellular blockers was examined using HEK293 transfectants and the inside-out patch clamp configuration. The sensitivity to spermine was significantly diminished in the D172N and triple mutant, but not the S165L mutant. Both the S165L and D172N mutants were less susceptible to blockade by Mg(2+)(i) than the wild-type channel, and the susceptibility was still lower in the D172N & S165L double mutant. These results suggest that S165 is situated deeper into the pore from inside than D172, where it is accessible to Mg(2+)(i) but not to spermine. The single channel conductance of the D172N mutant was similar to that of the wild-type Kir2.1, whereas the conductance of the S165L mutant was significantly lower. Permeation by extracellular Rb+ (Rb(+)(o)) was dramatically increased by S165L mutation, but was increased only slightly by D172N mutation. By contrast, the Rb+/K+ permeability ratio was increased equally by D172N and S165L mutation. We therefore propose that S165 forms the narrowest part of the Kir2.1 pore, where both extracellular and intracellular blockers plug the permeation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号