首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fermentative metabolism of Rhodospirillum rubrum (strain Ha, F1, S1) was studied after transfering the cells from aerobic to anaerobic dark culture conditions. Pyruvate was metabolized mainly to acetate and formate, and to a lesser extent to CO2 and propionate, by all strains. Therefore, pyruvate formate lyase would appear to be the characteristic key enzyme of the dark anaerobic fermentation metabolism in R. rubrum. Strain F1 and S1 metabolized the formate further to H2 and CO2. It is concluded that this cleavage was catalysed by a formate hydrogen lyase system. Strain Ha was unable to metabolize formate. The cleavage of formate and the synthesis of poly--hydroxy-butyric acid were increased by a low pH value (6.5). Fermentation equations and schemes of the pyruvate metabolism are discussed.  相似文献   

2.
The fermatation metabolism ofRhodospirillum rubrum Ha was studied after adaptation of both light-anaerobic and dark aerobic to dark anaerobic conditions.Pyruvate was metabolized to acetate, formate, CO2 and propionate by suspensions of cells adapted to anaerobiosis. Pyruvate cleavage to formate accounted for about two-thirds of the pyruvate decomposed. This process was catalyzed by a coenzyme A dependent pyruvate formate lyase. In carboxylate- and nucleotide-free extracts, the substrate concentrations for half-maximal velocity [S]0.5V were found to be 1.5 mM for pyruvate and 75 M for coenzyme A.Pyruvate formate lyase could practically not be demonstrated in light-anaerobic photosynthesizing cells. Lyase activity was low at a basic level in darkaerobic respiring cells. After adaptation of both types of cells under growth conditions to dark anaerobiosis lyase activity increased about 10-fold. Highest levels could be observed in cells grown aerobically in the dark on pyruvate after transition to dark anaerobic conditions. It is concluded that pyruvate formate lyase is the characteristic key enzyme of the dark-anaerobic fermentative metabolism ofR. rubrum Ha.  相似文献   

3.
Rhodospirillum rubrum is able to produce H2 during fermentation anaerobically in the dark in two ways, namely through formate hydrogen lyase and through the nitrogenase. After chemotrophic preculture aerobically in the dark formate hydrogen lyase was synthesized after a lag phase, whilst after phototrophic preculture a slight activity was present from the beginning of the anaerobic dark culture. During fermentation metabolism its activity increased noticeably. Hydrogen production through the nitrogenase occurred if the nitrogenase had been activated during phototrophic preculture. It ceased during fermentation metabolism after about 3 1/2 h anaerobic dark culture. The CO insensitive H2 production by the nitrogenase could be partially inhibited by N2. Potential activity of this system, however, remained and could be increased under conditions of nitrogenase induction. It seems therefore possible that synthesis of nitrogenase under N-deficiency can occur during fermentation metabolism in the same way as the formation of the photosynthetic apparatus in order to prepare for subsequent phototrophic metabolism.Abbreviations CAP chloramphenicol - DSM Deutsche Sammlung von Mikroorganismen, Göttingen - FHL formate hydrogen lyase - O.D optical density - PFL pyruvate formate lyase  相似文献   

4.
The physiology and biochemistry of Sarcina ventriculi was studied in order to determine adaptations made by the organism to changes in environmental pH. The organism altered carbon and electron flow from acetate, formate and ethanol production at neutral pH, to predominantly ethanol production at pH 3.0. Increased levels of pyruvate dehydrogenase (relative to pyruvate decarboxylase) and acetaldehyde dehydrogenase occurred when the organism was grown at neutral pH, indicating the predominance of carbon flux through the oxidative branch of the pathway for pyruvate metabolism. When the organism was grown at acid pH, there was a significant increase in pyruvate decarboxylase levels and a decrease in acetaldehyde dehydrogenase, causing flux through the non-oxidative branch of the pathway. CO2 reductase and formate dehydrogenase were not regulated as a function of growth pH. Pyruvate dehydrogenase possessed Michaelis-Menten kinetics for pyruvate with an apparent K m of 2.5 mM, whereas pyruvate decarboxylase exhibited sigmoidal kinetics, with a S0.5 of 12.0 mM. Differences in total protein banding patterns from cells grown at pH extremes suggested that synthesis of pyruvate decarboxylase and other enzymes was in part responsible for metabolic regulation of the fermentation products formed.  相似文献   

5.
End-product synthesis and enzyme activities involved in pyruvate catabolism, H2 synthesis, and ethanol production in mid-log (OD600  0.25), early stationary (OD600  0.5), and stationary phase (OD600  0.7) cell extracts were determined in Clostridium thermocellum ATCC 27405 grown in batch cultures on cellobiose. Carbon dioxide, hydrogen, ethanol, acetate and formate were major end-products and their production paralleled growth and cellobiose consumption. Lactate dehydrogenase, pyruvate:formate lyase, pyruvate:ferredoxin oxidoreductase, methyl viologen-dependant hydrogenase, ferredoxin-dependant hydrogenase, NADH-dependant hydrogenase, NADPH-dependant hydrogenase, NADH-dependant acetaldehyde dehydrogenase, NADH-dependant alcohol dehydogenase, and NADPH-dependant alcohol dehydrogenase activities were detected in all extracts, while pyruate dehydrogenase and formate dehydrogenase activities were not detected. All hydrogenase activities decreased (2–12-fold) as growth progressed from early exponential to stationary phase. Alcohol dehydrogenase activities fluctuated only marginally (<45%), while lactate dehydrogenase, pyruvate:formate lyase, and pyruvate:ferredoxin oxidoreductase remained constant in all cell extracts. We have proposed a pathway involved in pyruvate catabolism and end-product formation based on enzyme activity profiles in conjunction with bioinformatics analysis.  相似文献   

6.
Chlorofluexus aurantiacus OK-70 fl was grown photoautotrophically with hydrogen as the electron source. The lowest doubling time observed was 26 h.The mechanism of CO2 fixation in autotrophically grown cells was studied. The presence of ribulose-1,5-bis-phosphate carboxylase and phosphoribulokinase could not be demonstrated. Carbon isotope fractionation (13C) was small, and alanine and aspartate but not 3-phosphoglycerate were the major labelled compounds in short term 14CO2 labelling. Thus CO2 is not fixed by the Calvin cycle.Fluoroacetate (FAc) completely inhibited protein synthesis in cultures and caused a slight citrate accumulation. However, CO2 fixation continued and increased polyglucose formation occurred. Under these conditions added acetate was metabolized to polyglucose, as were glycine, serine, glyoxylate and succinate, but to a lesser extent; little or no formate or CO was utilised.Glyoxylate inhibited CO2 fixation in vivo, indicating that pyruvate is formed from acetyl-CoA and CO2 by pyruvate synthase. Two key enzymes of the reductive TCA cycle, citrate lyase and -ketoglutarate synthase were not detected in cell free extracts, but pyruvate synthase and phosphoenolpyruvate carboxylase were demonstrated. It is concluded that acetyl-CoA is a central intermediate in the CO2 fixation process, but the mechanism of its synthesis is not clear.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase - TCA cycle tricarboxylic acid cycle - FAc monofluoroacetate - PEP phosphoenolpyruvate - MV methyl viologen - TTC triphenyltetrazolium chloride - PMS phenazine methosulfate  相似文献   

7.
8.
The active species of CO2 , i.e. CO2 or HCO 3 –(H2CO3) utilized by enzymes catalyzing ferredoxin-linked carboxylation reactions was determined. The enzyme investigated was pyruvate synthase from Clostridium pasteurianum (EC 1.2.7.1; Pyruvate: ferredoxin oxidoreductase). Data were obtained which were compatible with those expected if CO2 is the active species.The dissociation constant (K S) of the enzyme-CO2 complex was measured. At pH 7.2 K Sfor CO2 of pyruvate synthase was found to be approximately 5 mM.Abbreviations Fd ferredoxin No distinctions are made between CO2, H2CO3, HCO 3 and CO 3 = when the symbol CO2 is used.  相似文献   

9.
Formate was formed in extracts of Chlorogonium elongatum via direct cleavage of pyruvate by a pyruvate formate-lyase (PFL, EC 2.3.1.54). The conversion of PFL to the catalytically active form required S-adenosylmethionine, ferric (2+), photoreduced deazariboflavin as reductant, pyruvate as allosteric effector and strict anaerobic conditions. At the optimum pH (pH 8.0), PFL catalyzed formate formation, pyruvate synthesis and the isotope exchange from [14C]formate into pyruvate with rates of 30.0, 1.5 and 1.2 nmol min-1 mg-1 protein, respectively. Treatment of the active enzyme with O2 irreversibly inactivated PFL activity (half-time 2 min). In addition to PFL, the activities of phosphotransacetylase (EC 2.3.1.8), acetate kinase (EC 2.7.2.1), aldehyde dehydrogenase (CoA acetylating, EC 1.2.1.10) and alcohol dehydrogenase (EC 1.1.1.1) were also detected in extracts of C. elongatum. The occurrence of these enzymes indicates pyruvate degradation via a formate-fermentation pathway during anaerobiosis of algal cells in the dark.Abbreviations DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazine+ethane sulfonic acid - PFL pyruvate formate-lyase  相似文献   

10.
Brochothrix thermosphacta, a psychrophilic, facultative anaerobe, exhibited homolactic fermentation under anaerobic conditions in the presence of excess glucose. In glucose-limited chemostat culture (on synthetic medium), ethanol, acetate, formate and lactate were formed. Formation of ethanol and acetate was accounted for by the formate concentrations in culture filtrates. Acetate, formate and ethanol formation was enhanced at low growth rates in chemostat culture. O2-limited chemostat studies indicated that formate formation was inhibited by oxygen (<0.2 M) and studies with a variant, strain 301, which lacked pyruvate dehydrogenase activity, showed that cell culture in basal medium did not occur at O2 tensions greater than that preventing formate production in the wild-type strain. The data are consistent with stimulation of pyruvate formate lyase activity by glucose limitation, possibly because of decreased concentrations of glycolytic intermediates.S.P. Singh was and A. Garrett and P.J. Rogers are with the Division of Science and Technology, Griffith University, Brisbane 4111, Australia. J. McAvoy and A.F. Egan are with the CSIRO Meat Research Laboratory, Cannon Hills, Brisbane 4170, Australia. S.P. Singh is now with the Department of Microbiology, C.B.S. & H., G.B. Pant University of Agriculture & Technology, Pantnagar-263145, India.  相似文献   

11.
A native homoethanol pathway (pyruvate-to-acetyl-CoA-to-acetaldehyde-to-ethanol) was engineered in Escherichia coli B. The competing fermentation pathways were eliminated by chromosomal deletions of the genes encoding for fumarate reductase (frdABCD), lactate dehydrogenase (ldhA), acetate kinase (ackA), and pyruvate formate lyase (pflB). For redox balance and anaerobic cell growth, the pyruvate dehydrogenase complex (aceEF-lpd, a typical aerobically-expressed operon) was highly expressed anaerobically using a native anaerobic inducible promoter. The resulting strain SZ420 (ΔfrdBC ΔldhA ΔackA ΔfocA-pflB ΔpdhR::pflBp6-pflBrbs-aceEF-lpd) contains no foreign genes and/or promoters and efficiently ferments glucose and xylose into ethanol with a yield of 90% under anaerobic conditions.  相似文献   

12.
The xylose metabolism of Bacteroides xylanolyticus X5-1 was studied by determining specific enzyme activities in cell free extracts, by following 13C-label distribution patterns in growing cultures and by mass balance calculations. Enzyme activities of the pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway were sufficiently high to account for in vivo xylose fermentation to pyruvate via a combination of these two pathways. Pyruvate was mainly oxidized to acetyl-CoA, CO2 and a reduced cofactor (ferredoxin). Part of the pyruvate was converted to acetyl-CoA and formate by means of a pyruvate-formate lyase. Acetyl-CoA was either converted to acetate by a combined action of phosphotransacetylase and acetate kinase or reduced to ethanol by an acetaldehyde dehydrogenase and an ethanol dehydrogenase. The latter two enzymes displayed both a NADH- and a NADPH-linked activity. Cofactor regeneration proceeded via a reduction of intermediates of the metabolism (i.e. acetyl-CoA and acetaldehyde) and via proton reduction. According to the deduced pathway about 2.5 mol ATP are generated per mol of xylose degraded.Abbreviations PPP Pentose phosphate pathway - PKP phosphoketolase pathway  相似文献   

13.
Pyruvate metabolism in Helicobacter pylori   总被引:1,自引:0,他引:1  
The metabolism of pyruvate by Helicobacter pylori was investigated employing one- and two-dimensional 1H and 13C nuclear magnetic resonance spectroscopy. Generation of pyruvate from l-serine in incubations with whole cell lysates indicated the presence of serine dehydratase activity in the bacterium. Pyruvate was formed also in cell suspensions and lysates from phosphoenol pyruvate. Metabolically competent cells incubated aerobically with pyruvate yielded alanine, lactate, acetate, formate, and succinate. The production of alanine and lactate indicated the presence of alanine transaminase and lactate dehydrogenase activities, respectively. Accumulation of acetate and formate as metabolic products provided evidence for the existence of a mixed-acid fermentation pathway in the microorganism. Formation of succinate suggested the incorporation of the pyruvate carbon skeleton into the Kreb's cycle. Addition of pyruvate to various liquid culture media did not affect bacterial growth or loss of viability. The variety of products formed using pyruvate as the sole substrate showed the important role of this metabolite in the energy metabolism of H. pylori.  相似文献   

14.
Enterococcus faecalis NCTC 775 was grown anaerobically in chemostat culture with pyruvate as the energy source. At low culture pH values, high in vivo and in vitro activities were found for both pyruvate dehydrogenase and lactate dehydrogenase. At high culture pH values the carbon flux was shifted towards pyruvate formate lyase. Some mechanisms possibly involved in this metabolic switch are discussed. In particular attention is paid to the NADH/NAD ratio (redox potential) and the fructose-1,6-bisphosphate-dependent lactate dehydrogenase activity as possible regulatory factors.Abbreviations PDH pyruvate dehydrogenase complex (EC 1.2.2.2) - PFL pyruvate formate lyase (EC 2.3.1.54) - LDH lactate dehydrogenase (EC 1.1.1.27) - FBP fructose-1,6-bisphosphate - MTT 3-(4,5-dimethyl-thiazoyl-2)-2,5-diphenyltetrazolium bromide - TPP thiamine pyrophosphate  相似文献   

15.
Accumulation of formate to millimolar levels was observed during the growth of Methanobacterium formicicum species on H2–CO2. Hydrogen was also produced during formate metabolism by M. formicicum. The amount of formate accumulated in the medium or the amount H2 released in gas phase was influenced by the bicarbonate concentration. The formate hydrogenlyase system was constitutive but regulated by formate. When methanogenesis was inhibited by addition of 2-bromoethane sulfonate, M. formicicum synthesized formate from H2 plus HCO inf3 sup- or produced H2 from formate to a steady-state level at which point the Gibbs free energy (G) available for formate synthesis or H2 production was approximately -2 to -3 kJ/reaction. Formate conversion to methane was inhibited in the presence of high H2 pressure. The relative rates of conversion of formate and H2 were apparently controlled by the G available for formate synthesis, hydrogen production, methane production from formate and methane production from H2. Results from 14C-tracer tests indicated that a rapid isotopic exchange between HCOO- and HCO inf3 sup- occurred during the growth of M. formicicum on H2–CO2. Data from metabolism of 14C-labelled formate to methane suggested that formate was initially split to H2 and HCO inf3 sup- and then subsequently converted to methane. When molybdate was replaced with tungstate in the growth media, the growth of M. formicicum strain MF on H2–CO2 was inhibited although production of methane was not Formate synthesis from H2 was also inhibited.  相似文献   

16.
In a medium containing a trace element solution and 10-4 M ferrous ions the growth yield ofClostridium formicoaceticum on fructose was 5.5 g of weight per l; in the absence of metal ion solution it was 1 g per l. The specific activity of methyl viologen dependent formate dehydrogenase under both conditions was 0.28 and 0.03 units per mg of protein, respectively. It could be increased to 9.75 units when the growth medium contained 10-4 M tungstate and 10-5 M selenite in addition. Molybdate was only about 40% as effective as tungstate. Tungstate or molybdate could not be replaced by vanadate, selenite not by sulfide. The formate dehydrogenase catalyzed also the reduction of CO2 to formate. The highest rate of formate synthesis was observed when pyruvate served as the reductant. No pyruvate: formate exchange but rapid pyruvate: CO2 exchange could be observed with cell-free extracts ofC. formicoaceticum. Pyruvate is fermented byC. formicoaceticum to yield up to 1.16 mole acetate per mole of pyruvate. Resting cells accumulated some formate in addition to acetate.  相似文献   

17.
Pyruvate is located at a metabolic junction of assimilatory and dissimilatory pathways and represents a switch point between respiratory and fermentative metabolism. In Escherichia coli, the pyruvate dehydrogenase complex (PDHC) and pyruvate formate-lyase are considered the primary routes of pyruvate conversion to acetyl-CoA for aerobic respiration and anaerobic fermentation, respectively. During glucose fermentation, the in vivo activity of PDHC has been reported as either very low or undetectable, and the role of this enzyme remains unknown. In this study, a comprehensive characterization of wild-type E. coli MG1655 and a PDHC-deficient derivative (Pdh) led to the identification of the role of PDHC in the anaerobic fermentation of glucose. The metabolism of these strains was investigated by using a mixture of 13C-labeled and -unlabeled glucose followed by the analysis of the labeling pattern in protein-bound amino acids via two-dimensional 13C,1H NMR spectroscopy. Metabolite balancing, biosynthetic 13C labeling of proteinogenic amino acids, and isotopomer balancing all indicated a large increase in the flux of the oxidative branch of the pentose phosphate pathway (ox-PPP) in response to the PDHC deficiency. Because both ox-PPP and PDHC generate CO2 and the calculated CO2 evolution rate was significantly reduced in Pdh, it was hypothesized that the role of PDHC is to provide CO2 for cell growth. The similarly negative impact of either PDHC or ox-PPP deficiencies, and an even more pronounced impairment of cell growth in a strain lacking both ox-PPP and PDHC, provided further support for this hypothesis. The three strains exhibited similar phenotypes in the presence of an external source of CO2, thus confirming the role of PDHC. Activation of formate hydrogen-lyase (which converts formate to CO2 and H2) rendered the PDHC deficiency silent, but its negative impact reappeared in a strain lacking both PDHC and formate hydrogen-lyase. A stoichiometric analysis of CO2 generation via PDHC and ox-PPP revealed that the PDHC route is more carbon- and energy-efficient, in agreement with its beneficial role in cell growth.  相似文献   

18.
C4-acid metabolism by isolated bundlesheath chloroplasts, mitochondria and strands of Eriochloa borumensis Hack., a phosphoennolpyruvate-carboxykinase (PEP-CK) species, was investigated. Aspartate, oxaloacetate (OAA) and malate were decarboxylated by strands with several-fold stimulation upon illumination. There was strictly light-dependent decarboxylation of OAA and malate by the chloroplasts, but the chloroplasts did not decarboxylate aspartate in light or dark. PEP was a primary product of OAA or malate decarboxylation by the chloroplasts and its formation was inhibited by 3-(3,4-dichlorophenyl)-1, 1-dimethylurea or NH4Cl. There was very little conversion of PEP to pyruvate by bundle-sheath chloroplasts, mitochondria or strands. Decarboxylation of the three C4-acids by mitochondria was light-independent. Pyruvate was the only product of mitochondrial metabolism of C4-acids, and was apparently transaminated in the cytoplasm since PEP and alanine were primarily exported out of the bundle-sheath strands. Light-dependent C4-acid decarboxylation by the chloroplasts is suggested to be through the PEP-CK, while the mitochondrial C4-acid decarboxylation may proceed through the NAD-malic enzyme (NAD-ME) system. In vivo both aspartate and malate are considered as transport metobolites from mesophyll to bundle-sheath cells in PEP-CK species. Aspartate would be metabolized by the mitochondria to OAA. Part of the OAA may be converted to malate and decarboxylated through NAD-ME, and part may be transported to the chloroplasts for decarboxylation through PEP-CK localized in the chloroplasts. Malate transported from mesophyll cells may serve as carboxyl donor to chloroplasts through the chloroplastic NAD-malate dehydrogenase and PEP-CK. Bundle-sheath strands and chloroplasts fixed 14CO2 at high rates and exhibited C4-acid-dependent O2 evolution in the light. Studies with 3-mercaptopicolinic acid, a specific inhibitor of PEP-CK, have indicated that most (about 70%) of the OAA formed from aspartate is decarboxylated through the chloroplastic PEP-CK and the remaining (about 30%) OAA through the mitochondrial NAD-ME. Pyruvate stimulation of aspartate decarboxylation is discussed; a pyruvate-alanine shuttle and an aspartate-alanine shuttle are proposed between the mesophyll and bundle-sheath cells during aspartate decarboxylation through the PEP-CK and NAD-ME system respectively.Abbreviations CK carboxykinase - -Kg -ketoglutarate - ME malic enzyme - 3-MPA 3-mercaptopicolinic acid - OAA oxaloacetate - PEP phosphoenolpyruvate - R5P ribose-5-phosphate  相似文献   

19.
Succinate production was studied in Escherichia coli AFP111, which contains mutations in pyruvate formate lyase (pfl), lactate dehydrogenase (ldhA) and the phosphotransferase system glucosephosphotransferase enzyme II (ptsG). Two-phase fermentations using a defined medium at several controlled levels of pH were conducted in which an aerobic cell growth phase was followed by an anaerobic succinate production phase using 100% (v/v) CO2. A pH of 6.4 yielded the highest specific succinate productivity. A metabolic flux analysis at a pH of 6.4 using 13C-labeled glucose showed that 61% of the PEP partitioned to oxaloacetate and 39% partitioned to pyruvate, while 93% of the succinate was formed via the reductive arm of the TCA cycle. The flux distribution at a pH of 6.8 was also analyzed and was not significantly different compared to that at a pH of 6.4. Ca(OH)2 was superior to NaOH or KOH as the base for controlling the pH. By maintaining the pH at 6.4 using 25% (w/v) Ca(OH)2, the process achieved an average succinate productivity of 1.42 g/l h with a yield of 0.61 g/g.  相似文献   

20.
Zusammenfassung R. rubrum bildet anaerob im Dunkeln aus exogenen und endogenen Substraten hauptsächlich Acetat und Propionat.In Kulturen mit Pyruvat als Substrat wurde in der Regel mehr Acetat als Propionat gebildet (4:1–1:1), mit Fructose dagegen weniger Acetat (1:2–1:3). Ruhende Zellen produzierten aus Pyruvat, im Vergleich zu Kulturen mit (NH4)2SO4 im Medium, relativ mehr Propionat als Acetat.Beim Abbau von gespeicherter PHBS wurde relativ mehr Acetat und weniger Propionat als beim Abbau endogener Polysaccharide produziert.Eine Zugabe von Ascorbat (0,8 u. 1,6%) oder K3[Fe(CN)6] (0,08 u 0,32%) hatte nur einen geringen Effekt auf das Verhältnis von Acetat zu Propionat. Exogenes CO2 war, besonders bei Zugabe von Fructose als Substrat, für die Synthese von Propionat notwendig. Die Wege der Acetat- und Propionatbildung unter anaeroben Bedingungen im Dunkeln werden diskutiert.
The synthesis of volatile acids by fermentation of pyruvate and fructose in anaerobic dark cultures of Rhodospirillum rubrum
Summary Under anaerobic conditions in the dark R. rubrum produced mainly acetate and propionate from exogenous and endogenous substrates.With pyruvate as a substrate usually less propionate than acetate was synthesized, with fructose, however, more propionate than acetate was produced.In resting cells, compared with cultures having (NH4)2SO4 in the medium, more propionate than acetate was synthesized from pyruvate.By degradation of stored poly--hydroxybutyric acid under anaerobic dark conditions relatively more acetate is produced than by degradation of endogenous polysaccharide.Addition of ascorbate (0.8 and 1.6%) or K3[Fe(CN)6] (0.08 and 0.32%) had little influence on the relative concentrations of acetate and propionate.Exogenous CO2 was necessary for the synthesis of propionate, especially when fructose was the substrate. The pathways of acetate and propionate production anaerobically in the dark are discussed.

Abkürzungen BChl Bacteriochlorophyll - PEP Phosphoenolpyruvat - PHBS Poly--hydroxybuttersäure - I.p.m. Impulse (14C) pro Minute  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号