首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
In this chapter, we describe a technique, FMRFamide tagging, that in principle can be used to measure the release of any sequenced neuropeptide. The method relies upon the addition of an "electrophysiologically active" tag to the prohormone that encodes the neuropeptide of interest. Secretion of the electrophysiological tag (and thus the peptide of interest) is detected by activation of the ionotropic "tag receptor." Both the tagged prohormone and the tag receptor are expressed in the cell type under investigation. Since the tag and the neuropeptide of interest are on the same prohormone they are co-secreted and thus secretion of the tag reflects the co-secretion of the neuropeptide of interest. This method can be used to detect neuropeptide secretion on a millisecond timescale.  相似文献   

2.
In this chapter, we describe a technique, FMRFamide tagging, that in principle can be used to measure the release of any sequenced neuropeptide. The method relies upon the addition of an “electrophysiologically active” tag to the prohormone that encodes the neuropeptide of interest. Secretion of the electrophysiological tag (and thus the peptide of interest) is detected by activation of the ionotropic “tag receptor.” Both the tagged prohormone and the tag receptor are expressed in the cell type under investigation. Since the tag and the neuropeptide of interest are on the same prohormone they are co-secreted and thus secretion of the tag reflects the co-secretion of the neuropeptide of interest. This method can be used to detect neuropeptide secretion on a millisecond timescale.  相似文献   

3.
The prohormone convertases (PCs) are an evolutionarily ancient group of proteases required for the maturation of neuropeptide and peptide hormone precursors. In Drosophila melanogaster, the homolog of prohormone convertase 2, dPC2 (amontillado), is required for normal hatching behavior, and immunoblotting data indicate that flies express 80- and 75-kDa forms of this protein. Because mouse PC2 (mPC2) requires 7B2, a helper protein for productive maturation, we searched the fly data base for the 7B2 signature motif PPNPCP and identified an expressed sequence tag clone encoding the entire open reading frame for this protein. dPC2 and d7B2 cDNAs were subcloned into expression vectors for transfection into HEK-293 cells; mPC2 and rat 7B2 were used as controls. Although active mPC2 was detected in medium in the presence of either d7B2 or r7B2, dPC2 showed no proteolytic activity upon coexpression of either d7B2 or r7B2. Labeling experiments showed that dPC2 was synthesized but not secreted from HEK-293 cells. However, when dPC2 and either d7B2 or r7B2 were coexpressed in Drosophila S2 cells, abundant immunoreactive dPC2 was secreted into the medium, coincident with the appearance of PC2 activity. Expression and secretion of dPC2 enzyme activity thus appears to require insect cell-specific posttranslational processing events. The significant differences in the cell biology of the insect and mammalian enzymes, with 7B2 absolutely required for secretion of dPC2 and zymogen conversion occurring intracellularly in the case of dPC2 but not mPC2, support the idea that the Drosophila enzyme has specific requirements for maturation and secretion that can be met only in insect cells.  相似文献   

4.
5.
Neuropeptides are released into the extracellular space from large secretory granules. In order to reach their release sites, these granules are translocated on microtubules and thought to interact with filamentous actin as they approach the cell membrane. We have used a green fluorescent protein-tagged neuropeptide prohormone (prepro-orphanin FQ) to visualize vesicle trafficking dynamics in NS20Y cells and cultures of primary hippocampal neurons. We found that the majority of secretory granules were mobile and accumulated at both the tips of neurites as well as other apparently specialized cellular sites. We also used live-cell imaging to test the notion that peptidergic vesicle mobility was regulated by secretagogues. We show that treatment with forskolin appeared to increase vesicle rates of speed, while depolarization with high K+ had no effect, even though both treatments stimulated neuropeptide secretion. In cultured hippocampal neurons the green fluorescent protein-tagged secretory vesicles were routed to both dendrites and axons, indicating that peptidergic vesicle transport was not polarized. Basal peptidergic vesicle mobility rates in hippocampal neurons were the same as those in NS20Y cells. Taken together, these studies suggest that secretory vesicle mobility is regulated by specific classes of secretagogues and that neuropeptide containing secretory vesicles may be released from dendritic structures.  相似文献   

6.
Stable cell lines with significantly elevated or diminished levels of a key neuropeptide processing enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), were generated by transfection of a mouse pituitary cell line with expression vectors containing PAM cDNA in the sense or antisense orientation. By evaluating the ability of these cell lines to alpha-amidate endogenous neuropeptides, a rate-limiting role for PAM in neuropeptide alpha-amidation was demonstrated. Overexpression of either the full-length PAM precursor with its trans-membrane domain or a soluble protein containing only the monooxygenase domain of PAM led to increased alpha-amidation of endogenous neuropeptides. Overexpression of the full-length PAM led to an unexpected decrease in the endoproteolytic processing of endogenous prohormone; conversely, underexpression of PAM led to significantly enhanced endoproteolytic processing of endogenous prohormone. These data suggest that PAM may have additional functions in peptide processing.  相似文献   

7.
Secretoneurin is a recently characterized neuropeptidepresent in the primary amino acid sequence of secretogranin II. We investigated the proteolytic processing of secretogranin II by prohormone convertases in vivo in a cellular system using the vaccinia virus system. Both PC1 and PC2 can cleave the secretogranin II precursor at sites of pairs of basic amino acids to yield intermediate-sized fragments. Other convertases like PACE4, PC5 and furin were not active. For the formation of the free neuropeptide secretoneurin a different pattern was found. Only PC1 but none of the other convertases tested including PC2 were capable of generating secretoneurin. Our results demonstrate that the prohormone convertases PC1 and PC2 are involved in proteolytic processing of secretogranin II. The neuropeptide secretoneurin can only be generated by PC1 suggesting tissue-specific processing of secretogranin II in neurons expressing different subsets of the prohormone convertases.  相似文献   

8.
We have devised a novel method for automated microsatellite analysis using "universal" fluorescent labeling. This system is based on polymerase chain reactions driven by sequence-specific primers and a reporter primer labeled with a fluorescent dye at its 5' end. The forward sequence-specific primer is designed with a tag region bearing no homology to any human genomic sequence. Complementary tag sequences act as templates for the 6-carboxyfluorescein-labeled reporter primer, and those products can be analyzed with an autosequencer. The results we achieved with this assay system were consistent with the results of conventional assays using radioisotope-labeled primers, and diagnosis required less time. Furthermore, the fluorescent-labeled reporter primer is "universal" in that it can be used with different sequence-specific primers designed to carry the appropriate tag sequence at their 5'-ends. Our observations suggest that the "universal" fluorescent labeling method is an efficient tool for analyzing sequence variations in human DNA.  相似文献   

9.
This study demonstrates the presence of a rich plexus of neuropeptide Y (NPY) immunoreactive fibers in the hypothalamus and in the intermediate lobe of the pituitary of Xenopus laevis. During superfusion of neurointermediate lobe tissue, synthetic NPY induces a rapid, powerful and dose-dependent inhibition of in vitro release of MSH, endorphin and other proopiomelanocortin (POMC) derived peptides. Therefore, NPY undoubtedly is one of the growing number of neuropeptides that are likely involved in control of the amphibian MSH cells. Although a number of stimulatory neuropeptides have been found, this is the first neuropeptide to apparently function through an inhibitory mechanism. In that a 2-hr treatment with NPY did not influence POMC biosynthesis, nor processing of this prohormone to smaller peptides, we conclude that the primary action of NPY is a direct effect on the secretory process of the MSH cell.  相似文献   

10.
Bioactivation of prohormones occurs in the granules of the regulated secretory pathway of endocrine cells, which release hormones in response to external stimulation. How secretory granules are formed and how the cargo is selected is still unclear, but it has been shown for several prohormones and processing enzymes that domains within the prohormone structure can act as "sorting signals" for this pathway. The domains mediate interactions with other proteins or with the membrane or facilitate aggregation of the (pro)peptides. We have now searched for domains in progastrin that are active in sorting the prohormone into secretory granules. Truncation studies showed that the N-terminal 30 residues of progastrin are dispensable, whereas the last 49 residues are sufficient for correct biosynthesis of bioactive gastrin. Thus, further N-terminal truncation abolished gastrin expression. C-terminal truncation of 8 residues resulted in an increase in basal secretion as did point mutations in the dibasic processing sites of progastrin. These mutants, however, still responded to secretagogues, suggesting a residual sorting capacity to the regulated pathway. Amino acid substitutions in an acidic, polyglutamate motif within gastrin-17, the main bioactive, cellular gastrin form, did not alter secretion per se, but when these residues were substituted in C-terminally truncated mutants, double mutants increased in basal secretion and did not respond to secretagogue stimulation. This implies that the mutants are constitutively secreted. Our data suggest that the dibasic processing sites constitute the most important sorting domain of progastrin, and these sites act in synergy with the acidic domain.  相似文献   

11.
12.
A cDNA encoding the prohormone of the pheromone biosynthesis activating neuropeptide (PBAN) in the moth Agrotis ipsilon was isolated. The cDNA contains 834 nucleotides, coding for a 193-amino acid protein that exhibits 89% identity with PBAN prohormones of other moths. The prohormone contains five potential peptides belonging to the FXPRL family. The peptide corresponding to the Bombyx mori diapause hormone exhibits an extra residue, and the C-terminal leucine is replaced by an isoleucine, introducing a new type of variability in this family of peptides. Northern blot analysis revealed expression in suboesophagal ganglion complexes. Constitutive heterologous expression of Agi-PBAN cDNA in yeast, using three different antibodies, did not produce PBAN-immunoreactive material.  相似文献   

13.
Bioactive peptides (i.e., neuropeptides or peptide hormones) represent the largest class of cell-cell signaling molecules in metazoans and are potent regulators of neural and physiological function. In vertebrates, peptide hormones play an integral role in endocrine signaling between the brain and the gonads that controls reproductive development, yet few of these molecules have been shown to influence reproductive development in invertebrates. Here, we define a role for peptide hormones in controlling reproductive physiology of the model flatworm, the planarian Schmidtea mediterranea. Based on our observation that defective neuropeptide processing results in defects in reproductive system development, we employed peptidomic and functional genomic approaches to characterize the planarian peptide hormone complement, identifying 51 prohormone genes and validating 142 peptides biochemically. Comprehensive in situ hybridization analyses of prohormone gene expression revealed the unanticipated complexity of the flatworm nervous system and identified a prohormone specifically expressed in the nervous system of sexually reproducing planarians. We show that this member of the neuropeptide Y superfamily is required for the maintenance of mature reproductive organs and differentiated germ cells in the testes. Additionally, comparative analyses of our biochemically validated prohormones with the genomes of the parasitic flatworms Schistosoma mansoni and Schistosoma japonicum identified new schistosome prohormones and validated half of all predicted peptide-encoding genes in these parasites. These studies describe the peptide hormone complement of a flatworm on a genome-wide scale and reveal a previously uncharacterized role for peptide hormones in flatworm reproduction. Furthermore, they suggest new opportunities for using planarians as free-living models for understanding the reproductive biology of flatworm parasites.  相似文献   

14.
Abstract: The simple, freshwater polyp Hydra is often used as a model to study development in cnidarians. Recently, a neuropeptide, 2, has been isolated from sea anemones that induces metamorphosis in a hydroid planula larva to become a polyp. Here, we have cloned a preprohormone from Hydra magnipapillata containing 11 (eight different) immature neuropeptide sequences that are structurally related to the metamorphosis-inducing neuropeptide from sea anemones. During the final phase of our cloning experiments, another research team independently isolated and sequenced five of the neuropeptides originally found on the preprohormone. Comparison of these mature neuropeptide structures with the immature neuropeptide sequences on the preprohormone shows that most immature neuropeptide sequences are preceded by Ser or Asn residues, indicating that these residues must be novel processing sites. Thus, the structure of the Hydra prepro-hormone confirms our earlier findings that cnidarian pre-prohormones contain unusual or novel processing sites. Nearly all neuropeptide copies located on the Hydra preprohormone will give rise to mature neuropeptides with a C-terminal Gly-Leu-Trp-NH2 sequence (the most frequent one being Gly-Pro-Pro-Pro-Gly-Leu-Trp-NH2; Hydra-LWamide I; three copies). Based on their structural similarities with the metamorphosis-inducing neuropeptide from sea anemones, the mature peptides derived from the Hydra-LWamide preprohormone are potential candidates for being developmentally active neurohormones in Hydra .  相似文献   

15.
Atriopeptin (AP) is expressed in several tissues with each tissue capable of specific differences in processing of the prohormone (pro-AP) to mature low molecular forms of the peptide. Since pro-AP has low biological activity, processing into mature AP is a critical activation event. This observation prompted us to study whether granule storage or regulated secretion of AP is essential for cleavage of mature peptide. We examined the processing of AP in adrenal medulla derived cells, using the rat pheochromocytoma cell line (PC12 cell) stably transfected with a genomic human AP DNA in the presence and absence of nerve growth factor (NGF), and also examined the mechanism of AP secretion and compared the results with those obtained using transfected chinese hamster ovary cells (CHO cells). The amount of prohormone was 5-10 fold higher than that of low molecular form of AP in the transfected PC12 cells. This ratio was essentially unchanged in differentiated PC12 cells after NGF treatment of the cells. Potassium depolarization of the transfected PC12 cells caused a 5-fold increase in AP release into the medium primarily as the intact prohormone. On the other hand, transfected CHO cells only exhibited constitutive AP release which is non-response to depolarization. These results suggest that the AP prohormone is sorted into secretory granules as the prohormone in PC12 cells and undergoes regulated release in response to depolarization indicating granule storage or release is not the critical determinant of AP prohormone cleavage.  相似文献   

16.
The 27-amino-acid gastrin-releasing peptide (GRP1-27) is a neuropeptide and growth factor that is synthesized by various neural and neuroendocrine cells. The major pro-GRP hormone (isoform I) contains both GRP1-27 and a novel C-terminal extension peptide termed pro-GRP31-125. In order to define potentially active neuropeptides that could be generated from this novel protein domain, we analyzed the posttranslational processing of endogenous human pro-GRP1-125 in a small-cell lung cancer cell line. Because such studies are much easier in an overexpression system, we investigated at the same time the posttranslational processing of baculovirus-expressed human pro-GRP1-125 in an insect ovary cell line. In the small-cell lung cancer cell line, GRP1-27 was cleaved as expected from the endogenous prohormone at a pair of basic amino acids (29 and 30) and alpha-amidated at its C-terminal methionine; however, a number of novel peptides were generated by additional cleavages in the pro-GRP31-125 domain. In the insect ovary cell line, GRP1-27 was cleaved from the expressed prohormone by a different mechanism, as were a number of other peptides that appeared to be similar in size to those produced by the human neuroendocrine tumor cell line. These data show for the first time that an insect ovary cell line that is widely used to overexpress proteins can process a human neuropeptide precursor. They also reveal the existence of novel pro-GRP-derived peptides that are candidates for biologically active ligands.  相似文献   

17.
Abstract: Neuropeptide Y is colocalized with noradrena-line in sympathetic fibers innervating the rat pineal gland. In this article we present a study of the effects and mechanisms of action of neuropeptide Y on the pineal noradrenergic transmission, the main input leading to the rhythmic secretion of melatonin. At the presynaptic level, neuropeptide Y inhibits by 45%, with an EC50 of 50 n M , the potassium-evoked noradrenaline release from pineal nerve endings. This neuropeptide Y inhibition occurs via the activation of pertussis toxin-sensitive G protein-coupled neuropeptide Y-Y2 receptors and is independent from, but additive to, the α2-adrenergic inhibition of noradrenaline release. At the postsynaptic level, neuropeptide Y decreases by a maximum of 35%, with an EC50 of 5 n M , the β-adrenergic induction of cyclic AMP elevation via the activation of neuropeptide Y-Y1 receptors. This moderate neuropeptide Y-induced inhibition of cyclic AMP accumulation, however, has no effect on the melatonin secretion induced by a β-adrenergic stimulation. On the contrary, in the presence of 1 m M ascorbic acid, neuropeptide Y potentiates (up to threefold) the melatonin secretion. In conclusion, this study has demonstrated that neuropeptide Y modulates the noradrenergic transmission in the rat pineal gland at both presynaptic and postsynaptic levels, using different receptor subtypes and transduction pathways.  相似文献   

18.
We have adapted the "directional tag subtractive hybridization" technique as a means of investigating stage-specific gene expression in Plasmodium falciparum. This technique utilizes unidirectional cDNA libraries cloned into separate lambda vectors and involves hydroxyapatite chromatographic separation of target antisense cDNA and driver sense strand cRNA followed by PCR amplification of cDNA sequences specific to the target stage. This technique enabled efficient subtraction of asexual blood stage sequences from a P. falciparum sporozoite cDNA library and led to identification of novel sporozoite sequences. This technique can be applied to study gene expression in parasite stages that are difficult to obtain routinely.  相似文献   

19.
Methods to characterize pheromone biosynthesis activating neuropeptide (PBAN) and other PBAN gene encoded neuropeptides (PGN) from individual subesophageal ganglion neuronal clusters of the corn earworm moth, Helicoverpa zea, were developed. Individual antisera against the N-terminal sequence to PBAN and each of the three PGNs from the Hez-PBAN prohormone were developed, and their specificity determined. In all cases, each antiserum stains the same three groups of subesophageal ganglion ventral midline neurons-the mandibular, maxillary and labial neurons-in both adult females and males. These results were confirmed using matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) of individual subesophageal ganglion neuronal clusters. Using mass spectrometry, the amidated PGN-24 was not detected but an N-terminally extended form is observed that is two amino acids longer. Other peptides resulting from the processing of the Hez-PBAN prohormone were detected. Using both the specific antisera and the cellular profiling abilities of MALDI MS, the roles of individual members of the Hez-PBAN prohormone derived peptides can now be explored.  相似文献   

20.
Neuropeptides are a diverse class of signaling molecules in metazoans. They occur in all animals with a nervous system and also in neuron-less placozoans. However, their origin has remained unclear because no neuropeptide shows deep homology across lineages, and none have been found in sponges. Here, we identify two neuropeptide precursors, phoenixin (PNX) and nesfatin, with broad evolutionary conservation. By database searches, sequence alignments, and gene-structure comparisons, we show that both precursors are present in bilaterians, cnidarians, ctenophores, and sponges. We also found PNX and a secreted nesfatin precursor homolog in the choanoflagellate Salpingoeca rosetta. PNX, in particular, is highly conserved, including its cleavage sites, suggesting that prohormone processing occurs also in choanoflagellates. In addition, based on phyletic patterns and negative pharmacological assays, we question the originally proposed GPR-173 (SREB3) as a PNX receptor. Our findings revealed that secreted neuropeptide homologs derived from longer precursors have premetazoan origins and thus evolved before neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号