首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maillard反应是食品加工和贮藏过程中发生的重要而最复杂的反应,在食品风味物质形成中发挥积极作用,但近二三十年来的研究也发现它可能存在的食品安全隐患。Maillard反应受氨基和羰基物质组成的影响,但其他物质对Maillard反应的干扰作用研究不多。本文综述了Maillard反应过程中抗氧化活性物质和自由基形成的特点,以及外源酚类可能在丙烯酰胺、呋喃、羟甲基糠醛等有害物质形成中发生的作用;在此基础上,提出了今后应研究的科学问题。  相似文献   

2.
We review current knowledge of the most abundant sugars, sucrose, maltose, glucose and fructose, in the world's major crop plants. The sucrose‐accumulating crops, sugar beet and sugar cane, are included, but the main focus of the review is potato and the major cereal crops. The production of sucrose in photosynthesis and the inter‐relationships of sucrose, glucose, fructose and other metabolites in primary carbon metabolism are described, as well as the synthesis of starch, fructan and cell wall polysaccharides and the breakdown of starch to produce maltose. The importance of sugars as hormone‐like signalling molecules is discussed, including the role of another sugar, trehalose, and the trehalose biosynthetic pathway. The Maillard reaction, which occurs between reducing sugars and amino acids during thermal processing, is described because of its importance for colour and flavour in cooked foods. This reaction also leads to the formation of potentially harmful compounds, such as acrylamide, and is attracting increasing attention as food producers and regulators seek to reduce the levels of acrylamide in cooked food. Genetic and environmental factors affecting sugar concentrations are described.  相似文献   

3.
Formation of heterocyclic amines using model systems   总被引:3,自引:0,他引:3  
Initially, modeling was used to identify the mutagenic heterocyclic amines and their precursors. Major precursors have been shown to be single amino acids or amino acids together with creatine or creatinine. There is also evidence that Maillard reactions are involved since heating sugar and amino acids together with creatine or creatinine has been shown to produce several of the mutagenic heterocyclic amines, especially the aminoimidazoazaarenes (AIA compounds), e.g., IQ, MeIQ, MeIQx, DiMeIQx and PhIP. Due to a low yield in the model systems, the mechanisms behind the formation of the mutagenic heterocyclic amines are still unclear and need further substantiation. The fact that some AIA compounds are also produced in the absence of sugar casts some doubts on an obligatory participation of the Maillard reaction; alternative routes might exist. Further work using isotopically labeled precursors needs to be done and so far such work has only been performed for PhiP. The formation of mutagenic heterocyclic amines is dependent on time, temperature, pH, concentration of the precursors, type of amino acid, and the presence of certain divalent ions. Water may have an impact both as a temperature regulator and as a solvent medium for the reactants.  相似文献   

4.
Free amino acids and reducing sugars participate in the Maillard reaction during high‐temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide‐forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide‐forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety‐dependent impact on sugar and amino acid concentrations and acrylamide‐forming potential.  相似文献   

5.
Branched aldehydes, such as 2-methyl propanal and 2- and 3-methyl butanal, are important flavour compounds in many food products, both fermented and non-fermented (heat-treated) products. The production and degradation of these aldehydes from amino acids is described and reviewed extensively in literature. This paper reviews aspects influencing the formation of these aldehydes at the level of metabolic conversions, microbial and food composition. Special emphasis was on 3-methyl butanal and its presence in various food products. Knowledge gained about the generation pathways of these flavour compounds is essential for being able to control the formation of desired levels of these aldehydes.  相似文献   

6.
Henle T 《Amino acids》2005,29(4):313-322
Summary. The Maillard reaction or nonenzymatic browning is of outstanding importance for the formation of flavour and colour of heated foods. Corresponding reactions, also referred to as “glycation”, are known from biological systems, where the formation of advanced glycation endproducts (AGEs) shall play an important pathophysiological role in diabetes and uremia. In this review, pathways leading to the formation of individual protein-bound lysine and arginine derivatives in foods are described and nutritional consequences resulting from this posttranslational modifications of food proteins are discussed.  相似文献   

7.
Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer’s disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.  相似文献   

8.
This paper briefly presents the main results obtained up to now on protein-flavour binding and release in relation with flavour perception. Among the food proteins, beta-lactoglobulin is the most extensively studied for its binding properties, which involve both hydrophobic and hydrogen binding. Recent developments using molecular modelling and Quantitative Structure-Activity Relationship confirmed the existence of two different binding sites for flavour compounds on beta-lactoglobulin. During the aroma release process in the mouth, not only free aroma compounds are released but also those reversibly bound by the protein, pointing out the fact that flavour perception is only affected if strong binding occurs.  相似文献   

9.
The chemical modification and crosslinking of proteins by the Maillard or browning reaction contributes to the aging of tissue proteins, and acceleration of this reaction during hyperglycemia is implicated in the pathogenesis of diabetic complications. Metal-catalyzed autoxidation reactions catalyze the browning of proteins by glucose, a process known as autoxidative glycosylation, but the effects of oxidative conditions on browning of proteins by smaller sugars has not been reported. In this work we studied the browning and crosslinking of the model protein, RNase A, by pentoses. Although antioxidative conditions inhibited the formation of glyoxal and the advanced glycation end-product, N epsilon-(carboxymethyl)lysine from arabinose, browning and crosslinking, and formation of the fluorescent crosslink pentosidine proceeded at comparable rates under oxidative and antioxidative conditions. These studies and other work on smaller dicarbonyl compounds indicate that Maillard reactions of simpler carbohydrates proceed efficiently in the absence of oxygen and suggest that antioxidant therapy for treatment of diabetic complications may have limited clinical efficacy.  相似文献   

10.
Physiological relevance of dietary melanoidins   总被引:1,自引:0,他引:1  
Morales FJ  Somoza V  Fogliano V 《Amino acids》2012,42(4):1097-1109
Melanoidins are the final products of the Maillard reaction. The main dietary sources of melanoidins are coffee, bread crust, bakery products, black beer and cocoa. Although the chemical structures of melanoidins are widely unknown, data from gravimetric techniques allow to roughly estimate a daily intake in the order of 10 g with a Western diet. Melanoidins contribute to the sensorial properties, modulating texture and flavour of foods. Growing evidence also suggests that melanoidins have health beneficial properties, such as chemopreventive, antioxidant and antimicrobial activities, and the ability to chelate different minerals. In the gastrointestinal tract, melanoidins behave not only as antioxidants, but also as dietary fibre by promoting the growth of bifidobacteria. This array of biological activities suggests the need for analytical techniques to identify the melanoidin structures and to control their formation during thermal food processing.  相似文献   

11.
Jakas A  Horvat S 《Biopolymers》2003,69(4):421-431
Reactions between biological amines and reducing sugars (the Maillard reaction) are among the most important of the chemical and oxidative changes occurring in biological systems that contribute to the formation of a complex family of rearranged and dehydrated covalent adducts that have been implicated in the pathogenesis of human diseases. In this study, chemistry of the Maillard reactions was studied in four model systems containing fructosamines (Amadori compounds) obtained from the endogenous opioid pentapeptide leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu), leucine-enkephalin methyl ester, structurally related tripeptide (Tyr-Gly-Gly), or from amino acid (Tyr). The degradation of model compounds as well as their ability to develop Maillard fluorescence was investigated under oxidative conditions in methanol and phosphate buffer pH 7.4 at two different temperatures (37 and 70 degrees C). At 37 degrees C, glycated leucine-enkephalin degraded slowly in methanol (t(1/2) approximately 13 days) and phosphate buffer (t(1/2) approximately 9 days), producing a parent peptide compound as a major product throughout a three-week incubation period. Whereas fluorescence slowly increased over time at 37 degrees C, incubations off all studied Amadori compounds at 70 degrees C resulted in a rapid appearance of a brown color and sharp increase in AGE (advanced glycation end products)-associated fluorescence (excitation 320 nm/emmision 420 nm) as well as in distinctly higher amounts of fragmentation products. The obtained data indicated that the shorter the peptide chain the more degradation products were formed. These studies have also helped to identify a new chemical transformation of the peptide backbone in the Maillard reaction that lead to beta-scission of N-terminal tyrosine side chain and p-hydroxybenzaldehyde formation under both aqueous and nonaqueous conditions.  相似文献   

12.
In food science the Maillard reaction is well known to cause degradation of amino acids and an overall decrease in the nutritional value of foods that have been subjected to heat in processing. There has been evidence more recently of the endogenous formation of some Maillard reaction products (MRPs) in biological systems and their association with pathophysiological conditions including diabetes, renal disease and cardiovascular disease. Several studies have suggested that dietary MRPs increase the in vivo pool of MRPs after intestinal absorption and contribute to the development of diabetes and related complications. This review focuses on the animal and human studies which have assessed the eventual implications of dietary MRPs on human health, highlighting the different diets tested, the experimental designs and the biomarkers selected to estimate the health effects. The results of these studies are compared to those of the recently published ICARE study. In this latter study an accurate determination of the MRP content of the diets was achieved, allowing the calculation of the contribution of individual food groups to daily MRP intakes in a regular western diet.  相似文献   

13.
Flavour formation by amino acid catabolism   总被引:18,自引:0,他引:18  
Microbial catabolism of amino acids produces flavour compounds of importance for foods such as cheese, wine and fermented sausages. Lactic acid bacteria are equipped with enzyme systems for using the amino acids in their metabolism and are useful for flavour formation of foods. Branched-chain amino acids (Leu, Ile, Val) are converted into compounds contributing to malty, fruity and sweaty flavours; catabolism of aromatic amino acids (Phe, Tyr, Trp) produce floral, chemical and faecal flavours; aspartic acid (Asp) is catabolised into buttery flavours and sulphuric amino acids (Met, Cys) are transferred into compounds contributing to boiled cabbage, meaty and garlic flavours.  相似文献   

14.
Light color and savory flavor enhancer are attractive for consumers and food producers. The effect of addition time of l ‐cysteine on inhibiting color formation was investigated in soybean peptide‐xylose system, and the possible pathway was explored. Once dicarbonyl compounds were formed during the Maillard reaction, the addition of l ‐cysteine had no color‐inhibiting effect; if l ‐cysteine was added immediately after the Amadori compound was formed, the extraordinary color‐inhibiting effect was observed. Therefore, an improved way to inhibit color formation was proposed on the basis of the interaction of l ‐cysteine and Amadori compounds by controlling the addition time of l ‐cysteine through gradient temperature‐elevating Maillard reaction. The system was heated at 80 °C for 60 min to form Amadori compounds, followed by the addition of L‐cysteine, and the temperature was raised to 120 °C and held for 110 min. Compared with traditional products, the lightest color product was found desirable by GC/MS analysis and sensory evaluation. The novel method proposed can be a guide for the industrial preparation of light‐colored products. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Nonenzymatic glycation of proteins, peptides and other macromolecules (the Maillard reaction) has been implicated in a number of pathologies, most clearly in diabetes mellitus. but also in the normal processes of aging and neurodegenerative amyloid diseases such as Alzheimer's. In the early stage, glycation results in the formation of Amadori-modified proteins. In the later stages, advanced glycation end products (AGE) are irreversibly formed from Amadori products leading to the formation of reactive intermediates, crosslinking of proteins, and the formation of brown and fluorescent polymeric materials. Although, the glycation of structural proteins has been attributed a key role in the complications of diabetes, recent attention has been devoted to the physiological significance of glycated peptide hormones. This review focuses on the physico-chemical properties of the Amadori compounds of bioactive peptides of endogenous and exogenous origin, such as Leu-enkephalin and morphiceptin, investigated under different conditions as well as on novel pathways in the Maillard reaction observed from investigating intramolecular events in ester-linked glycopeptides.  相似文献   

16.
The field of Maillard reaction in food has recently re-emerged. This reaction which takes place between carbohydrates and proteins at a high cooking temperatures and causes the formation of flavor and yellow to brown colors was already well documented. Little is known, however, about the formation of other Maillard reaction products (MRPs) which may be toxic: the so-called glycotoxins. It is well recognized that only 10% of these have been identified so far, and improved analytical methods are needed for the discovery of more of the neo-formed contaminants. Only a few studies as yet have focused on the digestion, metabolism and excretion of fructoselysine, carboxymethyllysine, pentosidine, acrylamide, the MRPs which have already been identified. MRPs have been shown to be present at significant amounts in a variety of industrially and domestically heat-treated foodstuffs but their absorption appears to be limited and they are readily excreted. Clinical studies indicate, none the less, that the typical Western diet, which contains a high MRPs content, may have an impact on human health. The main effects are observed on the glucose and lipid metabolisms, and on inflammatory mediators. However, the physiopathological role of the ingested MRPs has yet to be investigated in detail, so no conclusive recommendations can be given at present regarding their possible toxic effects.  相似文献   

17.
The formation mechanism of Maillard peptides was explored in Maillard reaction through diglycine/glutathione(GSH)/(Cys‐Glu‐Lys‐His‐Ile‐Met)–xlyose systems by heating at 120 °C for 30–120 min. Maximum fluorescence intensity of Maillard reaction products (MRPs) with an emission wavelength of 420~430 nm in all systems was observed, and the intensity values were proportional to the heating time. Taken diglycine/GSH–[13C5]xylose systems as a control, it was proposed that the compounds with high m/z values of 379 and 616 have the high molecular weight (HMW) products formed by cross‐linking of peptides and sugar. In (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the m/z value of HMW MRPs was not observed, which might be due to the weak signals of these products. According to the results of gel permeation chromatography, HMW MRPs were formed by Maillard reaction, especially in (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the percentage of Maillard peptides reached 52.90%. It was concluded that Maillard peptides can be prepared through the cross‐linking of sugar and small peptides with a certain MW range. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The wine yeast Saccharomyces cerevisiae is central in the production of aroma compounds during fermentation. Some of the most important yeast-derived aroma compounds produced are esters. The esters ethyl acetate and isoamyl acetate are formed from alcohols and acetyl-CoA in a reaction catalysed by alcohol acetyltransferases. The pool of acetyl-CoA available in yeast cells could play a key role in the development of ester aromas. Carnitine acetyltransferases catalyse the reversible reaction between carnitine and acetyl-CoA to form acetylcarnitine and free CoA. This reaction is important in transferring activated acetyl groups to the mitochondria and in regulating the acetyl-CoA/CoA pools within the cell. We investigated the effect of overexpressing CAT2, which encodes the major mitochondrial and peroxisomal carnitine acetyltransferase, on the formation of esters and other flavour compounds during fermentation. We also overexpressed a modified CAT2 that results in a protein that localizes to the cytosol. In general, the overexpression of both forms of CAT2 resulted in a reduction in ester concentrations, especially in ethyl acetate and isoamyl acetate. We hypothesize that overproduction of Cat2p favours the formation of acetylcarnitine and CoA and therefore limits the precursor for ester production. Carnitine acetyltransferase expression could potentially to be used successfully in order to modulate wine flavour.  相似文献   

19.
Protein glycation through Maillard reaction (MR) is a fundamental reaction both in foods and in the human body. The first step of the reaction is the formation of Amadori product (AP) that is converted into intermediate and advanced MR products during reaction development. Although the MR is not an enzymatic reaction, a certain degree of specificity in the glycation site has been observed. In the present study, we have monitored the glycation of different lysine-containing dipeptides to evaluate the influence on the NH(2) reactivity of the neighboring amino acid.Lysine dipeptides were reacted with glucose, galactose, lactose and maltose. The formation and identification of glycated compounds were monitored by mass spectrometry (MALDI-TOF and ESI-MS/MS) and by HPLC of their Fmoc derivatives. MS/MS analysis showed that the glucose APs formed on dipeptides have a characteristic fragmentation pattern: the fragment at [M - 84](+) due to the formation of pyrylium and furylium ion is mainly present in the monoglucosylated form, while the [M - 162](+) and the [M - 324](+) are more evident in the fragmentation pattern of the diglucosylated forms.The nature of the vicinal amino acids strongly affects lysine reactivity towards the different carbohydrates: the presence of hydrophobic residues such as Ile, Leu, Phe strongly increases lysine reactivity. Contrasting results were obtained with basic residues. The Lys-Arg dipeptide was among the most reactive while the Lys-Lys was not.  相似文献   

20.
Niquet C  Tessier FJ 《Amino acids》2007,33(1):165-171
Summary. Glutamine is one of the most abundant free amino acid found in raw food. In this study, the contribution of free glutamine to nonenzymatic browning and fluorescence was investigated using an aqueous model system with methylglyoxal. The results indicated that glutamine contributed to the Maillard reaction via two pathways. First, the hydrolysis of the amide bond of glutamine led to the release of ammonia which was implicated in the formation of brown color and fluorescence. Among other nitrogen donors tested (asparagine, glutamic acid and urea) our results demonstrated that free glutamine was a major source of ammonia during heating. When heated at 120 and 180 °C, 100% of ammonia was released from glutamine after 60 and 10 min, respectively. The second pathway involved a direct Maillard reaction with the α-amino group of glutamine. Both pathways led to a rapid and complete destruction of glutamine when heated in the model systems. With reference to the Maillard browning (absorbance at 420 nm) glutamine turned out to be the most reactive amine, followed by asparagine, glutamate, ammonia and urea. Maximum fluorescence (excitation and emission wavelengths at 330 and 450 nm, respectively) was also observed with glutamine followed by urea and ammonia. Overall this study suggested that free glutamine predominantly contributes to the color and fluorescence formations of foodstuffs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号