首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The control of chemicals used in aquaculture in Europe   总被引:4,自引:0,他引:4  
A range of chemicals are used in European marine aquaculture and these may be categorized as disinfectants, antifoulants and medicines (includes vaccines). This article provides a review of chemicals used in aquaculture in Europe, their regulatory status, and a checklist of points considered best practice in the use (and avoidance of use) of medicines in marine aquaculture. The release of antifoulants and disinfectants into the marine environment is controlled by local and/or national waste discharge regulations that may in turn be guided by wider environmental quality objectives. The authorization of veterinary medicines, biologicals (vaccines) and pharmaceuticals (chemicals), in Europe is the subject of several EC Directives. Registration dossiers address the issues of product quality, safety and efficacy and include environmental and consumer safety where the product is destined for use in a food‐producing animal. Fish farmers, like all livestock producers, must have access to a range of properly authorized medicines to safeguard animal health and welfare. The distribution and supply of medicines must be appropriately controlled and their authorization appropriately includes environmental risk assessment to a common European Union (EU) or international standard. There is progress towards the harmonization of the authorization process within the EU and this will help to ensure the continued availability of medicines for fish. Consumer safety is addressed by the setting of maximum residue limits (MRLs) derived through toxicological risk assessment and by surveillance of food for residues of veterinary medicines. The system for the environmental risk assessment of chemicals used in aquaculture is being developed and is outlined in the present article. It is recommended that the supply and use of fish medicines is uniformly regulated in the EU and supported by appropriate codes of best practice. A number of codes of practice that include reference to the use of medicines have been produced both at a European level and in member states. It is recommended that all European marine aquaculture producers adopt a code of best practice for the use of medicinal and other chemicals their industry. Medicines are one part of an integrated package in dealing with animal health. This includes environmental conditions, nutrition and hygiene. The best practice guidelines presented here are based on the outcome of three European workshops as part of the EU MARAQUA project that involved industry, government and research scientists. They cover the avoidance and minimizing of the need to use medicines and other chemicals, to recording and monitoring their use and effectiveness (in case of resistance development), exchange of experiences within the industry, and staff training. Recommendations are also included for manufacturers of medicines and other chemicals, and for regulatory authorities. Minimizing the need to use medicines and other chemicals requires attention to a healthy source of fish stock. Staff must be appropriately trained in fish husbandry (to minimize stress), hygiene and disease recognition and treatment, including management of the farm site to keep it disease free. The latter may require single generations of fish per site to allow a fallow period during which a disease or parasite cycle is broken. These recommendations and guidelines are in accordance with the current codes of practice being developed by different sectors of the aquaculture industry in different countries. They do not necessarily involve significantly higher production costs and indeed are more likely to save costs as medicines and disease impacts are very costly to industry.  相似文献   

3.
Ciliates are powerful indicators for monitoring the impact of aquaculture and other industrial activities in the marine environment. Here, we tested the efficiency of four different genetic markers (V4 and V9 regions of the SSU rRNA gene, D1 and D2 regions of the LSU rRNA gene, obtained from environmental (e)DNA and environmental (e)RNA) of benthic ciliate communities for environmental monitoring. We obtained these genetic metabarcodes from sediment samples collected along a transect extending from below salmon cages toward the open sea. These data were compared to benchmark data from traditional macrofauna surveys of the same samples. In beta diversity analyses of ciliate community structures, the V4 and V9 markers had a higher resolution power for sampling sites with different degrees of organic enrichment compared to the D1 and D2 markers. The eDNA and eRNA V4 markers had a higher discriminatory power than the V9 markers. However, results obtained with the eDNA V9 marker corroborated better with the traditional macrofauna monitoring. This allows for a more direct comparison of ciliate metabarcoding with the traditional monitoring. We conclude that the ciliate eDNA V9 marker is the best choice for implementation in routine monitoring programs in marine aquaculture.  相似文献   

4.
This paper describes marine aquaculture production and the regulation thereof in Turkey. Dominated by the cage farming of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata), shellfish farming is insignificant. Finfish farmers must obtain permits from the Ministry of Agriculture and Rural Affairs (MARA) as the main authority responsible for regulating marine finfish aquaculture. In addition, the Ministry of Environment and Forestry (MEF) controls the compatibility of interactions with the environment while the provincial governments issue permits for marine public property use and organize the leasing procedures. Finfish farming activities are controlled by a number of specific laws and regulations administered mainly through the MARA and the MEF. This article provides a review of the development and present status of the licensing, regulating and monitoring procedures for finfish aquaculture in Turkey. The notable expansion of the finfish aquaculture sector in recent years and the problems created in relation to the current relevant legislation and applications are presented and discussed.  相似文献   

5.
Strict environmental restrictions force the aquaculture industry to guarantee optimal water quality for fish production in a sustainable manner. The implementation of anammox (anaerobic ammonium oxidation) in biofilters would result in the conversion of both ammonium and nitrite (both toxic to aquatic animals) into harmless dinitrogen gas. Both marine and freshwater aquaculture systems contain populations of anammox bacteria. These bacteria are also present in the faeces of freshwater and marine fish. Interestingly, a new planctomycete species appears to be present in these recirculation systems too. Further exploitation of anammox bacteria in different compartments of aquaculture systems can lead to a more environmentally friendly aquaculture practice.  相似文献   

6.
Algal aquaculture worldwide is estimated to be a $5–6 billion U.S. per year industry. The largest portion of this industry is represented by macroalgal production for human food in Asia, with increasing activity in South America and Africa. The technical foundation for a shift in the last half century from wild harvest to farming of seaweeds lies in scientific research elucidating life histories and growth characteristics of seaweeds with economic interest. In several notable cases, scientific breakthroughs enabling seaweed-aquaculture advances were not motivated by aquaculture needs but rather by fundamental biological or ecological questions. After scientific breakthroughs, development of practical cultivation methods has been accomplished by both scientific and commercial-cultivation interests. Microalgal aquaculture is much smaller in economic impact than seaweed cultivation but is the subject of much research. Microalgae are cultured for direct human consumption and for extractable chemicals, but current use and development of cultured microalgae is increasingly related to their use as feeds in marine animal aquaculture. The history of microalgal culture has followed two main paths, one focused on engineering of culture systems to respond to physical and physiological needs for growing microalgae and the other directed toward understanding the nutritional needs of animals—chiefly invertebrates such as mollusks and crustaceans—that feed upon microalgae. The challenge being addressed in current research on microalgae in aquaculture food chains is to combine engineering and nutritional principles so that effective and economical production of microalgal feed cultures can be accomplished to support an expanding marine animal aquaculture industry.  相似文献   

7.
This paper reviews theoretical bases, experimental investigations, and the practice of using allozyme variability of marine invertebrate populations for environmental monitoring. The causes of unsuccessful attempts and the difficulties that researchers face are discussed. A number of recommendations are proposed.  相似文献   

8.
宁德水产养殖区水质状况及驱动力分析   总被引:1,自引:0,他引:1  
汪晓妍  周婷  应紫敏  吴静  杨武 《生态学报》2020,40(5):1766-1778
水产养殖对海岸带生态系统的水环境有显著影响,研究水产养殖地区的水质动态及其驱动力对海洋牧场建设和海岸带生态系统管理有着重要意义。以宁德为研究区域,基于2017年夏季和冬季水质监测和遥感影像等数据,通过地理信息系统技术和统计分析软件,分析了水产养殖区域的水质现状、水质变化和驱动力。结果表明,该海域水质处于重污染状态,富营养化水平较高。除了悬浮物和总磷之外,其他水质指标都呈现出显著的季节性差异,不同季节影响水质的因素也不相同。水质的季节性变化是初始水质状况、养殖活动和自然因素共同作用的结果。基于研究结果,笔者建议结合高分遥感技术对养殖区水面覆盖和利用进行监测,对养殖类型和行为(如饵料类型和投放方式)进行调控,开展水质长期监测和风险应急管理,保障海洋牧场社会经济效益的同时降低生态环境影响、防控生态和人体健康风险。  相似文献   

9.
Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.  相似文献   

10.
林勇  刘述锡  关道明  张振冬  温泉 《生态学报》2014,34(20):5984-5992
由于水产养殖缺乏科学空间规划,近年来中国最大的虾夷扇贝(Patinopecten yessoensis)养殖基地长山群岛发生了扇贝大规模死亡现象。当地渔业主管部门急需水产养殖空间格局优化的技术手段和科学依据。采用叶绿素a浓度、海水表面温度、水深、透明度以及评价单元到渔港、城镇、旅游区和自然保护区的距离等指标,构建了虾夷扇贝养殖适宜性评价模型,并以大小长山岛海域为示范区,对该海域的虾夷扇贝的养殖适宜性进行了空间分析。结果表明:大小长山岛海域虾夷扇贝养殖适宜性较高且具有较大的空间变异,在不考虑海域使用冲突情形下,养殖适宜性指数在6.0—7.0以及7.0以上的海域占示范区的面积比例分别为26.04%(167.75 km2)和4.73%(44.06 km2),且高适宜性(SSI7.0)区主要分布在大长山岛西北和西南海域;而由于航道和水产养殖存在海域使用冲突,高适宜区面积大幅下降为19.56 km2。在此基础上对大小长山岛海域虾夷扇贝养殖空间格局优化提出了建议。利用一些简单的距离指标反映了陆地基础设施因素对水产养殖选址的影响,体现了海陆统筹的理念并可为海陆统筹技术方法研究提供重要借鉴。  相似文献   

11.
Models used to assess the environmental impacts of aquaculture are becoming increasingly numerous and complicated. It is therefore becoming more and more difficult to present these moiels to non-scientists, even though the ultimate clients of research on aquaculture impacts are administrators and producers who have to deal with ractical considerations and have little time or inclination to deal with the complexities of scientific morfels. The Aquaculture Research Group within the Habitat Ecology Division has therefore been exploring the development of a decision support system (DSS) as a tool for communicating scientific advice to managers, specifically addressing the use of models to evaluate environmental impacts in order to assess whether the licensing of finfish aquaculture sites is likely to lead to degradation of natural marine habitat. The proposed DSS will incorporate simplified versions of several models along with a geographical data base of relevant hydrographic and other environmental information. The user will be able to enter various scenarios in a simple fashion (for example, a mouse can be used to specify site locations) and see an evaluation of the proposal based on several scientific models. Although a computer program cannot be expected to represent more than a fraction of the expertise of real scientists, the DSS approach appears to have several advantages; these include the ability to deliver a degree of expertise in remote and isolated regions, and, perhaps most important, a chance for managers to access scientific resources in a private environment which lets them explore various options without having to justify their eventual actions to scientists who may not fully appreciate all the pressures which bear on their decisions. The material developed so far includes a prototype of the proposed DSS in form of a computer program which demonstrates what the user interface for a working DSf would look like. The program has only a crude graphical user interface and does not actually interact with a real database, but the models are realistic and the output offers a simplified representation of what a real Decision Support System might provide.  相似文献   

12.
Marine fish farming is a relatively new component in the complex mixture of coastal resource uses in north temperate zone countries. In Western Canada, the Province of British Columbia issues site and operational licences for marine fish farms. Before granting licenses, staff evaluate fish farm applications for their technical feasibility as part of a conflict resolution process. This ensures that aquaculture develops in an environmental responsible manner, and is part of a public accountability process that recognises the interests of conflicting marine resource users. A referral system which solicits input from national and local organisations is part of this licensing process. The Norwegian YS for ordering salmon farming industry development involves partitioning the coast at a national level and developing organic loading maxima for each section of the coast. Within the constraints of this national plan Leaf authorities license aquaculture. This paper describes these different approaches and compares their strengths and weaknesses.  相似文献   

13.
In 1993, about 52% of the 433 698 tons of thetotal US aquaculture production came from theproduction of freshwater catfish. Excludingsalmonid culture, the percentage of marine finfishculture in total aquaculture production in the UShas been negligible. Commercial scale production ofmarine finfish in hatcheries is very limited in theUS.Studies on eggs and larvae of marine finfishspecies in the US have stemmed from theconsideration of fisheries management rather thanaquaculture. Most of the marine finfish larvaeproduced in the laboratory has been for the purposeof providing materials for other academic relatedstudies. Results of these studies can be applied inthe development of marine finfish hatcherytechnology. Hatchery technology for several marinefinfish species has been developed for stockenhancement, technology transfer and aquaculture. This paper reviews the current hatchery technologyof striped mullet (Mugil cephalus), dolphinfish (Coryphaena hippurus), red drum (Sciaenops ocellatus), and other potentialaquaculture species.  相似文献   

14.
生物标志物(Biomarkers)在海洋环境监测中的研究与进展   总被引:3,自引:0,他引:3  
污染物的存在给海洋环境和生态健康带来了巨大的压力,如何监测这些污染物并对其毒性进行科学的评价,成为当今环境科学关心的热点问题。生物标志物(Biomarkers)是毒理学研究的重要工具,它能对污染事件进行早期预警,并能在一定程度上评估生态风险。对近十多年来生物标志物的研究与应用进行了回顾,总结了不同水平(分子、细胞、个体、系统)生物标志物的种类、特征、检测方法和应用特点,并对现存挑战和未来发展趋向进行了展望,旨在系统的认识生物标志物,并为其在海洋环境监测中的合理应用提供理论借鉴。  相似文献   

15.
Marine aquaculture is expanding into deeper offshore environments in response to growing consumer demand for seafood, improved technology, and limited potential to increase wild fisheries catches. Sustainable development of aquaculture will require quantification and minimization of its impacts on other ocean‐based activities and the environment through scientifically informed spatial planning. However, the scientific literature currently provides limited direct guidance for such planning. Here, we employ an ecological lens and synthesize a broad multidisciplinary literature to provide insight into the interactions between offshore aquaculture and the surrounding environment across a spectrum of spatial scales. While important information gaps remain, we find that there is sufficient research for informed decisions about the effects of aquaculture siting to achieve a sustainable offshore aquaculture industry that complements other uses of the marine environment.  相似文献   

16.
科学合理的海域空间评价单元划分是各类海洋空间监测、评价、规划和管理的基础工作,对于保护海洋生态环境,实现海洋资源的可持续开发利用具有重大现实意义。然而,海洋的流动性、开放性、边界模糊性等特征,导致海洋空间评价单元划分较陆地而言更为复杂、困难。以福建省东山湾为例,提出一种适用于小尺度海域的空间评价单元划分技术方案,通过从化学属性、物理属性、生物学属性三个方面构建海域空间生态属性划分指标体系,进行空间分类评价,运用插值、叠加分析等GIS技术将东山湾划分为67个基本空间评价单元。研究结果不仅能为进一步划定东山湾海洋空间规划提供技术支持,同时为其他小尺度海域生态监测、评价、规划和管理提供科学参考。  相似文献   

17.
Large amounts of antimicrobials are used in salmonid aquaculture in Chile. Most are used in marine aquaculture, but appreciable amounts are also employed in freshwater aquaculture. Much research and many publications have examined transferable antimicrobial resistance in bacteria isolated from marine salmon farms, but much less attention has been paid to this area in freshwater salmon farming. A recent paper by Domínguez et al. (2019) has as least in part remedied this situation. We now comment on some of its interpretations and have attempted to point out its areas of strength and weakness in light of the published scientific literature. Seen in this setting, the important results presented by Domínguez et al. (2019) underline the need for increased awareness of the challenge to animal and human health posed by excessive use of antimicrobials in aquaculture.  相似文献   

18.
光合细菌及其应用现状   总被引:23,自引:1,他引:22  
光合细菌以其独特的生理功能及其在环境和人类生活许多方面的广泛应用,受到了微生物、水产、环境等学科的重视,本文对光合细菌在水产养殖及有机废水处理等方面的应用现状进行了综述。  相似文献   

19.
The rapid development of intensive fed aquaculture (e.g. finfish and shrimp) throughout the world is associated with concerns about the environmental impacts of such often monospecific practices, especially where activities are highly geographically concentrated or located in suboptimal sites whose assimilative capacity is poorly understood and, consequently, prone to being exceeded. One of the main environmental issues is the direct discharge of significant nutrient loads into coastal waters from open-water systems and with the effluents from land-based systems. In its search for best management practices, the aquaculture industry should develop innovative and responsible practices that optimize its efficiency and create diversification, while ensuring the remediation of the consequences of its activities to maintain the health of coastal waters. To avoid pronounced shifts in coastal processes, conversion, not dilution, is a common-sense solution, used for centuries in Asian countries. By integrating fed aquaculture (finfish, shrimp) with inorganic and organic extractive aquaculture (seaweed and shellfish), the wastes of one resource user become a resource (fertilizer or food) for the others. Such a balanced ecosystem approach provides nutrient bioremediation capability, mutual benefits to the cocultured organisms, economic diversification by producing other value-added marine crops, and increased profitability per cultivation unit for the aquaculture industry. Moreover, as guidelines and regulations on aquaculture effluents are forthcoming in several countries, using appropriately selected seaweeds as renewable biological nutrient scrubbers represents a cost-effective means for reaching compliance by reducing the internalization of the total environmental costs. By adopting integrated polytrophic practices, the aquaculture industry should find increasing environmental, economic, and social acceptability and become a full and sustainable partner within the development of integrated coastal management frameworks.  相似文献   

20.
我国水产养殖事业的发展及今后的努力方向曾呈奎(中国科学院海洋研究所青岛266071)我国水产养殖事业在新中国成立以前,只有个别零星古老的,传统的事业。在养殖海产鱼虾方面北方有几百年来的"港养对虾和鱼",而在南方也有类似的鱼塘。在海藻栽培方面,则有几百年来的福建金门县的礁养海萝及平潭县的礁养紫菜等。这些古老的传统养殖方法虽然产生一些效果,但产量较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号