首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of axons in three-dimensional astrocyte cultures   总被引:3,自引:0,他引:3  
The environment of the adult central nervous system (CNS) does not support axon regeneration. We have been unable to replicate this behaviour using monolayer cultures of glia, so we have developed a technique for three dimensional culture of glial cells. We have examined the growth of axons from embryonic and postnatal retina and dorsal root ganglia (DRG's) through purified three-dimensional astrocyte cultures. Neither postnatal DRG's nor adult retina were able to grow axons through astrocytes from cultures 3 weeks or more old, although some DRG axons grew in astrocyte cultures which were 10 days or less old. However axons from embryonic DRG's and retina grew axons profusely into even elderly astrocyte cultures. All the tissues grew axons into three-dimensional Schwann cell cultures. The behaviour of axons in three-dimensional glial cultures therefore reproduces the behaviour of axons in vivo.  相似文献   

2.
Postganglionic sympathetic axons display a remarkable ability for new collateral growth in response to local increases in nerve growth factor (NGF). Elevating NGF levels within the brain also induces the directional growth of sympathetic axons, but not within myelinated pathways of adult mammals. In this investigation, we provide in vivo evidence that sympathetic axons are capable of NGF-induced collateral growth through the microenvironment of mature myelinated pathways, especially in the absence of the p75 neurotrophin receptor (NTR). In transgenic mice overexpressing NGF centrally and expressing p75NTR, only a few varicose sympathetic axons invade the optic tract after the first month of postnatal life. In other transgenic mice overexpressing NGF centrally but lacking p75NTR expression, the incidence of sympathetic axons within this myelinated tract substantially increases. Moreover, numerous unmyelinated sympathetic axons cluster together to form large processes extending through the optic tract; such structures are first seen 8 weeks after birth. Only these large axon bundles display prominent immunostaining for GAP-43, which is preferentially localized to the sympathetic fibers, since nonmyelinating Schwann cells are not associated with these axon bundles. These data provide the first direct evidence that sympathetic axons are indeed capable of NGF-induced collateral growth into myelinated tracts of mature mammals, and that their continued growth through this microenvironment is markedly enhanced by the absence of p75NTR expression. We propose that p75NTR among sympathetic axons may either directly or indirectly limit collateral branching of these fibers in response to increased levels of NGF.  相似文献   

3.
Postganglionic sympathetic axons display a remarkable ability for new collateral growth in response to local increases in nerve growth factor (NGF). Elevating NGF levels within the brain also induces the directional growth of sympathetic axons, but not within myelinated pathways of adult mammals. In this investigation, we provide in vivo evidence that sympathetic axons are capable of NGF‐induced collateral growth through the microenvironment of mature myelinated pathways, especially in the absence of the p75 neurotrophin receptor (NTR). In transgenic mice overexpressing NGF centrally and expressing p75NTR, only a few varicose sympathetic axons invade the optic tract after the first month of postnatal life. In other transgenic mice overexpressing NGF centrally but lacking p75NTR expression, the incidence of sympathetic axons within this myelinated tract substantially increases. Moreover, numerous unmyelinated sympathetic axons cluster together to form large processes extending through the optic tract; such structures are first seen 8 weeks after birth. Only these large axon bundles display prominent immunostaining for GAP‐43, which is preferentially localized to the sympathetic fibers, since nonmyelinating Schwann cells are not associated with these axon bundles. These data provide the first direct evidence that sympathetic axons are indeed capable of NGF‐induced collateral growth into myelinated tracts of mature mammals, and that their continued growth through this microenvironment is markedly enhanced by the absence of p75NTR expression. We propose that p75NTR among sympathetic axons may either directly or indirectly limit collateral branching of these fibers in response to increased levels of NGF. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 51–66, 1999  相似文献   

4.
It has been postulated that the aberrant projection of sympathetic axons to individual primary sensory neurons may provide the morphological basis for pain-related behaviors in rat models of chronic pain syndrome. Since nerve growth factor (NGF) can elicit the collateral sprouting of noradrenergic sympathetic terminals, it might be predicted that NGF plays a role in mediating the sprouting of sympathetic axons into sensory ganglia. Using a line of transgenic mice overexpressing NGF among glial cells, it was first found that trigeminal ganglia from adult transgenic mice possessed significantly higher levels of NGF protein in comparison to age-matched wild-type mice; as well, detectable levels of NGF mRNA transgene expression were present in both the ganglia and brain stem. Within the trigeminal ganglia, a small proportion of the sensory neuronal population stained immunohistochemically for NGF; a higher percentage of NGF-positive neurons was evident in transgenic mice. New sympathetic axons extended into the trigeminal ganglia of transgenic mice only and formed perineuronal plexuses surrounding only those neurons immunostained for NGF. In addition, such plexuses were accompanied by glial processes from nonmyelinating Schwann cells. From these data, we propose that accumulation of glial-derived NGF by adult sensory neurons and its putative release into the ganglionic environment induce the directional growth of sympathetic axons to the source of NGF, namely, the cell bodies of primary sensory neurons. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 347–360, 1998  相似文献   

5.
Adult neural progenitor cells (NPC) co-grafted with fibroblasts replace cystic lesion defects and promote cell-contact-mediated axonal regeneration in the acutely injured spinal cord. Fibroblasts are required as a platform to maintain NPC within the lesion; however, they are suspected to create an inhospitable milieu for regenerating central nervous system (CNS) axons. Therefore, we thought to replace fibroblasts by primary Schwann cells, which might serve as a superior scaffold to maintain NPC within the lesion and might further enhance axon regrowth and remyelination following spinal cord injury. Adult rats underwent a cervical dorsal column transection immediately followed by transplantation of either NPC/Schwann cell or NPC/Schwann cell/fibroblast co-grafts. Animals receiving Schwann cell or fibroblast grafts alone, or Schwann cell/fibroblast co-grafts served as controls. At 3 weeks after injury/transplantation, histological analysis revealed that only fibroblast-containing grafts were able to replace the cystic lesion defect. In both co-cultures and co-grafts, Schwann cells and NPC were segregated. Almost all NPC migrated out of the graft into the adjacent host spinal cord. As a consequence, only peripheral-type myelin, but no CNS-type myelin, was detected within co-grafts containing NPC/Schwann cells. Corticospinal axon regeneration into Schwann-cell-containing co-grafts was reduced. Taken together, Schwann cells within NPC grafts contribute to remyelination. However, Schwann cells fail as a supporting platform to maintain NPC within the graft and impair CNS axon regeneration; this makes them an unfavorable candidate to support/augment NPC grafts following spinal cord injury.This work was supported by the Institute International de Recherche en Paraplégie Geneva, on behalf of an anonymous donation, and ReForM-Program, University of Regensburg, School of Medicine.  相似文献   

6.
During development, many CNS projection neurons establish topographically ordered maps in their target regions. Myelin-associated inhibitors of neurite growth contribute to the confinement of fiber tracts during development and limit plastic changes after CNS projections have been formed. Neutralization of myelin-associated growth inhibitors leads to an expansion of the retinal innervation of the superior colliculus (SC). In the lesioned adult mammalian CNS, these long projection neurons are usually unable to regrow axons over long distances after lesion due to myelin-associated inhibitors, which interfere with axonal growth in vivo and in vitro. Application of a specific antibody directed against myelin-inhibitors (IN-1) promotes regrowth of corticospinal tract or retinal ganglion cell axons. In the present study, we asked whether application of an antibody to myelin-associated growth inhibitors would lead to disturbances of target-specific axon guidance. To examine this issue, we used an in vitro model, the “stripe assay,” to examine the behavior of rat retinal ganglion cell axons on membranes from embryonic and deafferented adult rat SC. On membrane preparations from embryonic rat SC, retinal fibers avoid posterior tectal membranes, possibly due to the presence of a repulsive factor. Nasal retinal axons show a random growth pattern. On membranes prepared from the deafferented adult rat SC, temporal and nasal axons prefer to grow on membranes prepared from their specific target region, which suggests the involvement of target-derived attractive guidance components. The results of the present study show that retinal axons grow significantly faster in the presence of IN-1 antibody that neutralizes myelin-associated growth inhibitors present in the membrane preparations from the adult rat SC. IN-1 antibody, however, does not interfere with specific axonal guidance. This suggests that axonal guidance and specific target finding are independently regulated in retinal axons. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
1. Cultured neurons from embryonic chick sympathetic ganglia or dorsal root ganglia grow nerve fibers extensively on simple substrata containing fibronectin, collagens (types I, III, IV), and especially laminin. 2. The same neurons cultured on substrata containing glycosaminoglycans grow poorly. Glycosaminoglycans (heparin) inhibit nerve fiber growth on fibronectin substrata. 3. Proteolytic fragments of fibronectin support nerve fiber growth only when the cell attachment region is intact. For example, a 105 kD fragment, encompassing the cell attachment region, supports growth when immobilized in a substratum, but a 93 kD subfragment, lacking the cell attachment region, is unable to support fiber growth. When it is added to the culture medium, the 105 kD fragment inhibits fiber growth on substrata containing native fibronectin. 4. In culture medium lacking NGF, DRG neurons extend nerve fibers only on laminin and not on fibronectin, collagen or polylysine. Studies with radioiodinated laminin indicate that laminin binds with a relatively high affinity (kd approximately equal to 10(-9) M) to DRG neurons, and to a variety of other neural cells (NG108 cells, PC12 cells, rat astrocytes, chick optic lobe cells). We have isolated a membrane protein (67 kD) by affinity chromatography on laminin columns and are characterizing this putative laminin receptor. 5. Dissociated DRG neurons or ganglionic explants cultured on complex substrata consisting of tissue sections of CNS or PNS tissues extend nerve fibers onto the PNS (adult rat sciatic nerve) but not CNS (adult rat optic nerve) substrata. Other tissue substrata which support fiber growth in vivo (embryonic rat spinal cord, goldfish optic nerve) support growth in culture. While substrata from adult CNS, which support meager regeneration in vivo (adult rat spinal cord) support little fiber growth in culture. 6. Ganglionic explants cultured in a narrow space between a section of rat sciatic nerve and optic nerve grow preferentially onto the sciatic nerve suggesting that diffusible growth factors are not responsible for the differential growth on the two types of tissues. 7. Dissociated neurons adhere better to sections of sciatic nerve than optic nerve. Laminin, rather than fibronectin or heparan sulfate proteoglycan, is most consistently identifiable by immunocytochemistry in tissues (sciatic nerve, embryonic spinal cord, goldfish optic nerve) which support nerve fiber growth. Taken together, these data suggest that ECM adhesive proteins are important determinants of nerve regeneration.  相似文献   

8.
Abstract: Reactive gliosis, which occurs in response to damage to the central nervous system, has been recognized for years but is not yet understood. We describe here a tissue culture model of reactive astrocytes used to characterize their properties. Cultures are prepared 1 week following 6-hydroxydopamine (6-OHDA) lesion of rat substantia nigra and compared with astrocytes cultured from normal adult rats or rats injected with saline only. Astrocytes from the 6-OHDA-lesioned side contained elevated levels of glial fibrillary acidic protein (GFAP) and GFAP mRNA and were intensely immunoreactive for GFAP, vimentin, and two epitopes that in vivo are found only on reactive astrocytes. The basal content of nerve growth factor (NGF) mRNA and NGF in astrocytes from 6-OHDA-lesioned rats was significantly higher relative to control astrocytes. Two inflammatory cytokines, interleukin-1β and interferon-γ, increased synthesis of NGF up to 20-fold in the reactive cells, whereas there was no response in the normal adult astrocytes. Astrocytes from postnatal day 2 rats shared many of the properties of the reactive adult astrocytes. These cultures offer the possibility to characterize the cellular and molecular properties of reactive astrocytes and to determine the factors responsible for activation of astrocytes.  相似文献   

9.
The development of new, adult-specific axonal pathways in the central nervous system (CNS) of insects during metamorphosis is still largely uncharacterized. Here we used axonal labeling with DiI to describe the timing and pattern of growth of sensory axons originating in the wing of Drosophila as they establish their adult projection pattern in the CNS during pupal life. The wing of Drosophila carries a small number of readily identifiable sensory organs (sensilla) whose neurons are located in the periphery and whose axons travel along specific routes within the adult CNS. The neurons are born and undergo axonogenesis in a characteristic order. The order of axon arrival in the CNS appears to be the same as that of their development in the periphery. Within the CNS, the formation of four prominent axon bundles leading to distant termination sites is followed by the formation of a compact axon termination site near the point of wing nerve entry into the CNS. This sensillum-specific pattern persists into adulthood without discernible modification. We also find a small number of axons filled with DiI prior to the formation of the four permanent bundles. We have only been able to fill them for a few hours in early pupal life and therefore consider them to be transient. The bundles of wing sensory axons travel within tracts that contain other axons as well. Using immunocytochemistry, the tracts start to be histologically identifiable at around 12 h after pupariation (AP), and grow substantially as metamorphosis proceeds. Wing sensory neurons are found in the tracts by 18–20 h AP and the full adult pattern is established by 48 h AP. When sensory axons first enter the CNS, they fan out in the region where their appropriate tracts are located, but they do not wander extensively. They quickly form bundles that become increasingly compact over time. Calculations show that the rate of axon extension within the CNS varies from bundle to bundle and is equal to or greater than that of the same axons growing through wing tissue. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
We have analyzed the growth of axons in the wings of the mutants Hairy wing and hairy of Drosophila melanogaster. These mutants produce many supernumerary bristle organs and sensilla campaniformia, whose axons grow between the two wing epithelia and can be visualized in both pupal and adult stages. The sensory axons of wild-type animals follow two paths in the wing, within longitudinal veins L1 and L3, and always grow with a distal to proximal polarity. In the mutants, all axons following these two paths likewise grow with correct polarity. Axons elsewhere in the wing, however, are found to grow in many different directions, including from proximal to distal and hence directly away from the central nervous system. A variety of patterns of axon growth and fasciculation are seen in different individuals. Only if the supernumerary axons encounter the two normal paths do they reliably grow toward the base of the wing. We conclude that these two paths provide polarity information for axon growth, information which is either not used or not available elsewhere in the wing in spite of the obvious morphological polarization of every epithelial cell. The time course of neural differentiation suggests that the normal sensory cells of mutant wings, which grow axons relatively early, may be the source of polarity information for the later-differentiating supernumerary cells.  相似文献   

11.
The forms, disposition, and cytoskeletal contents of astroglia in immature mouse cerebellum were studied by immunocytochemical staining with antisera against two intermediate filament proteins, vimentin (Vim) (58,000 daltons) and glial filament protein (GF) (51,000 daltons). From embryonic (E) Day 15 to postnatal (P) Day 2, Vim is expressed in cells throughout the cerebellar anlage, including radial glia and Bergmann fibers, cells with amorphous shapes and 2–3 processes, and thick longitudinal elements oriented parallel to axons within axon tracts. GF is not expressed during the first few postnatal days, but by P7, there is a dramatic increase in GF-positive astrocyte-like cells in the putative white matter that are more densely stained and more crowded than at any other age. Between P7 and P14 all astrocytes throughout the cerebellum express both Vim and GF. From P21 on, Vim expression is progressively rarer in all astrocytes except for Bergmann fibers, and GF-positive astrocytes become less numerous. These findings raise two issues: (a) the lineage and relationships of cells expressing Vim and GF; (b) Since GF-positive cells appear as axon ingrowth ceases, axons must grow in a terrain comprised of glial cells that have a different cytoskeletal composition (vimentin), reflecting a less differentiated state, than mature astrocytes or than the GF-rich astrocytes that proliferate after injury in adult CNS.  相似文献   

12.
During embryonic neural development, axon tips ("growth cones") are guided through a dynamic three-dimensional (3-D) landscape by soluble chemotropic factors and by immobilized, growth-permissive or growth-inhibiting contact cues present in the extracellular matrix and on the surface of surrounding cells. It has been difficult to probe the search algorithms of growth cones in response to multiple contact cues during 3-D navigation using traditional two-dimensional (2-D) substrates. Here, we present an in vitro study in which the axons of murine embryonic cortical neurons are challenged with competing growth options, using 3-D substrates that feature variations in permissiveness and microtopography. As 3-D substrates, we used poly-D-lysine (PDL) coatings on microfabricated steps of polydimethylsiloxane (PDMS) and complementary features of Matrigel. We found that axons display a preference for PDL over Matrigel and for the straightest path within a distance consistent with the exploratory range of the growth cone. When these two preferences are in conflict, axons choose to grow straight into Matrigel; when the straight path is not permissive, the axon turns in the direction that minimizes the turning angle. These results suggest that growth cones make 3-D navigation decisions by integrating permissiveness and topographical cues.  相似文献   

13.
In the primary olfactory pathway, olfactory ensheathing cells (OECs) extend processes to envelop bundles of olfactory axons as they course towards their termination in the olfactory bulb. The expression of growth-promoting adhesion and extracellular matrix molecules by OECs, and their spatially close association with olfactory axons are consistent with OECs being involved in promoting and guiding olfactory axon growth. Because of this, OECs have been employed as a possible tool for inducing axonal regeneration in the injured adult CNS, resulting in significant functional recovery in some animal models and promising outcomes from early clinical applications. However, fundamental aspects of OEC biology remain unclear. This brief review discusses some of the experimental data that have resulted in conflicting views with regard to the identity of OECs. We present here recent findings which support the notion of OECs as a single but malleable phenotype which demonstrate extensive morphological and functional plasticity depending on the environmental stimuli. The review includes a discussion of the normal functional role of OECs in the developing primary olfactory pathway as well as their interaction with regenerating axons and reactive astrocytes in the novel environment of the injured CNS. The use of OECs to induce repair in the injured nervous system reflects the functional plasticity of these cells. Finally, we will explore the possibility that recent microarray data could point to OECs assuming an innate immune function or playing a role in modulating neuroinflammation.  相似文献   

14.
Regeneration of injured adult CNS axons is inhibited by formation of a glial scar. Immature astrocytes are able to support robust neurite outgrowth and reduce scarring, therefore, we tested whether these cells would have this effect if transplanted into brain injuries. Utilizing an in vitro spot gradient model that recreates the strongly inhibitory proteoglycan environment of the glial scar we found that, alone, immature, but not mature, astrocytes had a limited ability to form bridges across the most inhibitory outer rim. In turn, the astrocyte bridges could promote adult sensory axon re‐growth across the gradient. The use of selective enzyme inhibitors revealed that MMP‐2 enables immature astrocytes to cross the proteoglycan rim. The bridge‐building process and axon regeneration across the immature glial bridges were greatly enhanced by chondroitinase ABC pretreatment of the spots. We used microlesions in the cingulum of the adult rat brains to test the ability of matrix modification and immature astrocytes to form a bridge for axon regeneration in vivo. Injured axons were visualized via p75 immunolabeling and the extent to which these axons regenerated was quantified. Immature astrocytes coinjected with chondroitinase ABC‐induced axonal regeneration beyond the distal edge of the lesion. However, when used alone, neither treatment was capable of promoting axonal regeneration. Our findings indicate that when faced with a minimal lesion, neurons of the basal forebrain can regenerate in the presence of a proper bridge across the lesion and when levels of chondroitin sulfate proteoglycans (CSPGs) in the glial scar are reduced. © 2010 Wiley Periodicals, Inc.Develop Neurobiol 70: 826–841, 2010  相似文献   

15.
P Liesi 《The EMBO journal》1985,4(10):2505-2511
Most regions of the adult mammalian central nervous system (CNS) do not support axonal growth and regeneration. Laminin, expressed by cultured astrocytes and known to promote neurite outgrowth of cultured neurons, is normally present in brain basement membranes, and only transiently induced in adult brain astrocytes by injury. Here I provide three lines of evidence which suggest that the continued expression of laminin by astrocytes may be a prerequisite for axonal growth and regeneration in adult CNS. Firstly, laminin is continuously present in astrocytes of adult rat olfactory bulb apparently in close association with the olfactory nerve axons. Secondly, laminin is continuously expressed by astrocytes in adult frog brain, and sectioning of the optic tract further increases laminin immunoreactivity in astrocytes of the optic tectum during the period of axonal regeneration. Lastly, laminin appears normally in astrocytes of the frog and goldfish optic nerves which regenerate, but not in astrocytes of the rat or chick optic nerves which do not regenerate. The selective association of laminin with axons that undergo growth and regeneration in vivo is consistent with the possibility that astrocytic laminin provides these central nervous systems with their regenerative potential.  相似文献   

16.
In the developing mammalian central nervous system astrocytes have been proposed as an important substrate for axon growth. In the adult central nervous system following injury, astrocytes are a major component of the gliotic response which has been proposed to block axon growth. Experimental transplantation studies using cultured astrocytes have suggested that immature but not mature cultured astrocytes have the capacity to support axon outgrowth when transplanted into the adult rodent CNS. These observations suggest that astrocyte maturation is accompanied by changes in the functional capacity of these cells to support axon outgrowth. To determine whether this functional change reflects an intrisic astrocyte property, the extent and molecular bases of neurite outgrowth from embryonic rat cortical and chick retinal neurons on cultures of purified immature and mature astrocytes have been compared in vitro. The rate and extent of neurite outgrowth from both neuronal populations are consistently greater over the surface of immature than over the surface of mature astrocytes. Furthermore, antibodies to NCAM and G4/L1 significantly reduce neurite outgrowth on immature but not mature astrocytes, while antibodies to the integrin B1 receptor reduced outgrowth on both immature and, to a lesser extent, mature astrocytes. These results suggest that in vitro mature astrocytes have a reduced capacity and different molecular bases for supporting neurite outgrowth compared to immature astrocytes and are consistent with the proposal that functional changes during astrocyte maturation may partially contribute to regulating axon growth in the mammalian CNS.  相似文献   

17.
Kozlova  ELENA N.  Seiger  AKE  Aldskogius  HAKAN 《Brain Cell Biology》1997,26(12):811-822
Following dorsal root crush, the lesioned axons regenerate in the peripheral compartment of the dorsal root, but stop at the boundary between the peripheral and the central nervous system, the dorsal root transitional zone. We have previously shown that fibres from human fetal dorsal root ganglia grafted to adult rat hosts are able to grow into the spinal cord, but were not able to specify the route taken by the ingrowing fibres. In this study we have challenged the dorsal root transitional zone astrocyte boundary with human dorsal root ganglion transplants from 5–8-week-old embryos. By tracing immunolabelled human fibres in serial sections, we found that fibres consistently grow around the dorsal root transitional zone astrocytes in laminin-rich peripheral surroundings, and extend into the host rat spinal cord along blood vessels, either into deep or superficial laminae of the dorsal horn, or into the dorsal funiculus. Human fibres that did not have access to blood vessels grew on the spinal cord surface. These findings indicate, that in spite of a substantial growth capacity by axons from human embryonic dorsal root ganglion cells as well as their tolerance to non-permissive factors in the mature mammalian CNS, these axons are still sensitive to the repellent effects of astrocytes of the mature dorsal root transitional zone. Furthermore, this axonal ingrowth is consistently associated with laminin-expressing structures until the axons reach the host spinal cord.  相似文献   

18.
Neuronal axons are guided by attractive and repulsive cues in their local environment. Since the identification of the repulsive guidance molecule (RGM) a (RGMa) as an axon repellent in the visual system, diverse functions, as part of the developing and adult central nervous system (CNS), have been ascribed to it. The binding of RGMa to its receptor neogenin has been shown to induce RhoA activation, leading to inhibitory/repulsive behavior and the collapse of the neuronal growth cone. In this paper, we provide evidence to suggest the involvement of RGMb, another member of the RGM family, in the rat CNS. RGMb inhibits neurite outgrowth in postnatal cerebellar granule neurons (CGNs) in vitro. RGMb is expressed by oligodendrocytes and neurons in the adult rat CNS, and the expression of this molecule is upregulated around the site of spinal cord injury. RGMb is present in myelin isolated from an adult rat brain. RGMb and neogenin are coexpressed in CGNs and entorhinal cortex neurons. These findings suggest that RGMb is a myelin-derived inhibitor of axon growth in the CNS. Inhibition of RGMb may provide an alternative approach for the treatment of spinal injuries.  相似文献   

19.
Traumatic damage to the central nervous system (CNS) destroys the blood-brain barrier (BBB) and provokes the invasion of hematogenous cells into the neural tissue. Invading leukocytes, macrophages and lymphocytes secrete various cytokines that induce an inflammatory reaction in the injured CNS and result in local neural degeneration, formation of a cystic cavity and activation of glial cells around the lesion site. As a consequence of these processes, two types of scarring tissue are formed in the lesion site. One is a glial scar that consists in reactive astrocytes, reactive microglia and glial precursor cells. The other is a fibrotic scar formed by fibroblasts, which have invaded the lesion site from adjacent meningeal and perivascular cells. At the interface, the reactive astrocytes and the fibroblasts interact to form an organized tissue, the glia limitans. The astrocytic reaction has a protective role by reconstituting the BBB, preventing neuronal degeneration and limiting the spread of damage. While much attention has been paid to the inhibitory effects of the astrocytic component of the scars on axon regeneration, this review will cover a number of recent studies in which manipulations of the fibroblastic component of the scar by reagents, such as blockers of collagen synthesis have been found to be beneficial for axon regeneration. To what extent these changes in the fibroblasts act via subsequent downstream actions on the astrocytes remains for future investigation.  相似文献   

20.
Transforming growth factor-beta 1 (TGF-beta 1) has been shown to up-regulate the synthesis of nerve growth factor (NGF) in cultured rat astrocytes and in neonatal brain in vivo (Lindholm, D., B. Hengerer, F. Zafra, and H. Thoenen. 1990. NeuroReport. 1:9-12). Here we show that mRNA encoding TGF-beta 1 increased in rat cerebral cortex after a penetrating brain injury. The level of NGF mRNA is also transiently increased after the brain trauma, whereas that of brain-derived neurotrophic factor remained unchanged. In situ hybridization experiments showed a strong expression of TGF-beta 1 4 d after the lesion in cells within and in the vicinity of the wound. Staining of adjacent sections with OX-42 antibodies, specific for macrophages and microglia/brain macrophages, revealed a similar pattern of positive cells, suggesting that invading macrophages, and perhaps reactive microglia, are the source of TGF-beta 1 in injured brain. Both astrocytes and microglia express TGF-beta 1 in culture, and TGF-beta 1 mRNA levels in astrocytes are increased by various growth factors, including FGF, EGF, and TGF-beta itself. TGF-beta 1 is a strong inhibitor of astrocyte proliferation and suppresses the mitotic effects of FGF and EGF on astrocytes. The present results indicate that TGF-beta 1 expressed in the lesioned brain plays a role in nerve regeneration by stimulating NGF production and by controlling the extent of astrocyte proliferation and scar formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号