首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fine structure of the sarcoplasmic reticulum and the transverse tubular system of the femoral muscle of the cockroach, Leucophaea maderae, was studied after prefixation in glutaraldehyde, postfixation in osmium tetroxide, and embedding in Epon. The sarcoplasmic reticulum in this muscle reveals features not previously reported. The sarcoplasmic reticulum is abundant, consisting mainly of a fenestrated envelope which surrounds each myofibril at all levels in the sarcomere. This sarcoplasmic reticulum envelope is continuous transversally as well as longitudinally along the myofibrils. Dyadic junctions are formed by a single T system element which contacts the unfenestrated sarcoplasmic reticulum of adjacent myofibrils in an alternating manner at the ends of the A band. At the dyads, regularly spaced thickenings of the sarcoplasmic reticulum membranes bordering the dyadic spaces are noted. These thickenings, however, do not contact the T tubule membrane. Typical dyadic contacts also are seen between the cell surface membrane and sarcoplasmic reticulum. Z line-like material is seen in contact with the membranes of the cell surface and longitudinal branches of the T systems.  相似文献   

2.
Summary The aorta of Sympetrum danae possesses two dorsal diverticula: one in the mesothorax and one in the metathorax. They are very similar in form and position. Each diverticulum has a dorsal valve through which blood is pumped from the wings down into the aorta. The wall of the aortic diverticula consists of two simple cell layers: an outer epidermis-like layer and an inner muscle layer. The nuclei of the muscle cells are situated close to the lumen of the diverticula. The mitochondria are evenly dispersed between the myofibrils and are often paired up on either side of the Z-band. The Z-bands are thick and fragmented. The length of the sarcomeres varies from 3.3 to 6.1 . The A-band length is about 3 . The myofibrils consist of thick (250 Å) and thin (85 Å) filaments. Each thick filament is surrounded by 9–12 thin filaments. The sarcoplasmic reticulum is well developed and separates the myofibrils with one or two layers. The T-tubules are flattened and branch irregularly like a two-dimensional tree between the lamellar myofibrils. Intercalated discs are observed.The peculiarities of the muscle of aortic diverticula in S. danae are discussed in relation to various muscles of other insects and arthropods.  相似文献   

3.
The adventitia of the crayfish heart is composed of cells that are separated from each other by an intercellular space about 280 Å wide. Desmosomes are present on apposing surfaces of adjacent cells. A basal lamina underlies the adventitia and consists of a dense, amorphous substance that contains numerous fine filaments. The myocardial cells are striated and an external lamina 0.1 μ thick is present on the surface of the plasma membrane. The nuclei and most of the cytoplasm, glycogen and mitochondria are located at the cell periphery. The myofibrils are composed of thick and thin filaments and confined to the core of the cell. A T system and a well-developed SR are present. Elements of these organelles form dyads at levels that correspond to the H bands, and triads at levels that correspond to the Z bands of the peripheral myofibrils. The relationship of the T tubules to the myofibrils is discussed. Locus cells exhibit a unique pattern of intracellular myofibrillar branching. They branch from a region which has a structure similar to the Z band material. The myofibrils radiate outwardly in various directions and form numerous cellular branches which form intercalated discs with adjacent myocardial cells. These discs are more complex than those observed in poikilothermic vertebrates but are simpler than those in mammals. An endocardium is lacking in the crayfish heart but interstitial cells are present in close association with the myocardial cells and neural elements. Terminal nerve processes deeply embedded in the myocardial cells are described.  相似文献   

4.
Fine structural characteristics of the cardiac muscle and its sarcomere organization in the black widow spider, Latrodectus mactans were examined using transmission electron microscopy. The arrangement of cardiac muscle fibers was quite similar to that of skeletal muscle fibers, but they branched off at the ends and formed multiple connections with adjacent cells. Each cell contained multiple myofibrils and an extensive dyadic sarcotubular system consisting of sarcoplasmic reticulum and T‐tubules. Thin and thick myofilaments were highly organized in regular repetitive arrays and formed contractile sarcomeres. Each repeating band unit of the sarcomere had three apparent striations, but the H‐zone and M‐lines were not prominent. Myofilaments were arranged into distinct sarcomeres defined by adjacent Z‐lines with relatively short lengths of 2.0 μm to 3.3 μm. Cross sections of the A‐band showed hexagon‐like arrangement of thick filaments, but the orbit of thin filaments around each thick filament was different from that seen in other vertebrates. Although each thick filament was surrounded by 12 thin filaments, the filament ratio of thin and thick myofilaments varied from 3:1 to 5:1 because thin filaments were shared by adjacent thick filaments.  相似文献   

5.
The heart wall of Hemilamprops rosea and Leucon nasica is innervated and consists of a single-layered epicardium and a single-layered myocardium. Their heart ultrastructure does not differ. Large lipid-containing cells are found in the heart lumen. The membrane systems conform to the typical eumalacostracan condition, with the isopods as the only exception. The transverse tubular system at the Z- and H-levels is connected by longitudinal tubules. The sarcoplasmic reticulum, which forms a fenestrated sheath around the myofibrils, is continuous across the Z-band and modified at the H-level only. The interior and peripheral couplings are located at the H-level. The posterior and anterior aorta lack contractile material. The aorta valves are bicuspid.  相似文献   

6.
The tubular fibers of the claw-closer muscle of the scorpion have a central core containing nuclei and mitochondria. The myofibrils have the shape of thin lamellae (1 µ) extending radially from the core to the surface membrane (20 µ). The thick myofilaments are organized in a hexagonal array with orbits of 10–13 thin myofilaments. The ratio of thick-to-thin filaments is 1:5. Transverse tubular system (TS) openings are located between lamellated myofibrils. In each sarcomere two TS's are found, one on each side of the H band. The TS is composed of a transverse tubule and tubular pockets (TP). The TP's form diadic contact with the terminal cisternae of the sarcoplasmic reticulum. The TS can be traced from the cell membrane down to the cell core. The surface area of the TS was calculated to be six times that of the outer surface membrane.  相似文献   

7.
Summary The ultrastructure of the heart in Chimaera monstrosa L. is described. The endocardial and the epicardial cells are similar in the three cardiac regions. Myocardial cells show small variations.The myofibre, 4–6 m thick, contains one or a few myofibrils. Each myosin filament is surrounded by six actin filaments. The sarcomere banding pattern includes the Z-, A-, I-, M-, N-, and H-band. End-to-end attachments between myofibres are composed of alternating desmosomes and fasciae adhaerentes. Desmosomes and nexuses occur between longitudinally oriented cell surfaces. The sarcoplasmic reticulum is poorly developed but well defined. Peripheral coupling-like structures are common, T-tubules are absent. Membrane bound dense bodies occur in all regions. Areas with ribosomes and single myosin filaments are often seen.The epicardial cells have a regular hexagonal surface and are much thicker than the endocardial cells. Numerous short and a few longer cytoplasmic extensions face the pericardial cavity.The fiat endocardial cells contain a large nucleus and small amounts of cytoplasm.  相似文献   

8.
The common ventricle in the heart of the Thunnus alalunga was studied. The ventricular myocardium consists of an outer compact layer and a thick inner spongy layer. The compact layer has slightly larger cells (4-6 microns diameter) than the spongy layer (2.5-5 microns diameter). Ultrastructurally the myocardium displays normal arrangements of myofibrils and mitochondria. The sarcoplasmic reticulum is poorly developed. The intercalated discs are simple with the fascia adherens being the most frequent junctional type observed; occasionally a desmosome was seen. Nexus type junctions are present but are unassociated with the intercalated discs. There are no t-tubules evident but the plasmalemma exhibits numerous caveolae which rarely form couplings with the sarcoplasmic reticulum. A morphometric analysis of the volume percent of mitochondria and myofibrils showed that the myocardial cells in the spongy layer of the heart have a significantly greater volume percentage of mitochondria than the compact layer. No significant differences were found between myocardial regions when the volume percentages of myofibrils were compared. The physiological studies revealed that the albacore tuna has heart rates (120 bpm) and ventricular blood pressures (100 mmHg) that are among the highest reported for fish.  相似文献   

9.
An electron microscopic analysis of the internal rectus muscle of the eye of the pigeon permitted identification of three types of muscle fibers: the first type shows the features previously described in vertebrate twitch fibers. The second type has very scarce sarcoplasmic reticulum at the A-band, their myofibrils fuse together at this level; the Z-line is large and the M-line is not present; the thick filaments are more abundant per unit area than in the first type of fibers, their hexagonal array is slightly disrupted and the fibers appear more opaque than the other two fiber types. The third type of fibers has bundles of myofibrils incompletely surrounded by sarcoplasmic reticulum at the A-band; the Z-line is large; the M-line is present and the hexagonal array of the thick filaments is maintained.  相似文献   

10.
The somatic musculature of Trichodorus porosus is transversely striated, and that of Criconemoides similis is obliquely striated. The species also differ in configuration of the myofibrils, arrangement of the filaments within the myofibrils, and abundance of sarcoplasmic reticulum. Both species are platymyarian and meromyarian. The muscle cells are composed of myofibrils, sarcoplasm, sarcoplasmic reticulum, and various organelles. The myofibrils of both species contain actin and myosin filaments.  相似文献   

11.
Ultrastructure of muscle cells in Siboglinum fiordicum (Pogonophora)   总被引:1,自引:0,他引:1  
Two different muscle types are found in the body of Siboglinum fiordicum: body wall muscle and blood vessel muscle. Both are of a myomesothelial type. The myofibrils of the body wall muscle are non-striated and consist of thick and thin myofilaments. Scattered dense bodies and attachment plaques are described. The sarcoplasmic reticulum forms a three-dimensional network in the myofibrils and only peripheral couplings are observed. The thick filaments are of a paramyosin type and have a diameter ranging from 400-1500 A. The blood vessels muscle is non-striated, but sometimes a sarcomere-like organization has been observed. Both thick and thin filaments are present. The thick filaments have a diameter of 250-400 A and lack transverse striations. Dense bodies and attachment of plaques are few. The sparse sarcoplasmic reticulum is restricted to the myofibril periphery where it makes peripheral couplings with sarcolemma. The luminal surface of the vessels is lined by a basal lamina with collagen-like inclusions. No endothelium is found. The body wall muscle and the blood vessel muscle are compared with other muscle types described in invertebrates.  相似文献   

12.
Assembly of specialized membrane domains, both of the plasma membrane and of the ER, is necessary for the physiological activity of striated muscle cells. The mechanisms that mediate the structural organization of the sarcoplasmic reticulum with respect to the myofibrils are, however, not known. We report here that ank1.5, a small splice variant of the ank1 gene localized on the sarcoplasmic reticulum membrane, is capable of interacting with a sequence of 25 aa located at the COOH terminus of obscurin. Obscurin is a giant sarcomeric protein of approximately 800 kD that binds to titin and has been proposed to mediate interactions between myofibrils and other cellular structures. The binding sites and the critical aa required in the interaction between ank1.5 and obscurin were characterized using the yeast two-hybrid system, in in vitro pull-down assays and in experiments in heterologous cells. In differentiated skeletal muscle cells, a transfected myc-tagged ank1.5 was found to be selectively restricted near the M line region where it colocalized with endogenous obscurin. The M line localization of ank1.5 required a functional obscurin-binding site, because mutations of this domain resulted in a diffused distribution of the mutant ank1.5 protein in skeletal muscle cells. The interaction between ank1.5 and obscurin represents the first direct evidence of two proteins that may provide a direct link between the sarcoplasmic reticulum and myofibrils.In keeping with the proposed role of obscurin in mediating an interaction with ankyrins and sarcoplasmic reticulum, we have also found that a sequence with homology to the obscurin-binding site of ank1.5 is present in the ank2.2 isoform, which in striated muscles has been also shown to associate with the sarcoplasmic reticulum. Accordingly, a peptide containing the COOH terminus of ank2.2 fused with GST was found to bind to obscurin. Based on reported evidence showing that the COOH terminus of ank2.2 is necessary for the localization of ryanodine receptors and InsP3 receptors in the sarcoplasmic reticulum, we propose that obscurin, through multiple interactions with ank1.5 and ank2.2 isoforms, may assemble a large protein complex that, in addition to a structural function, may play a role in the organization of specific subdomains in the sarcoplasmic reticulum.  相似文献   

13.
The fine structure of fast and slow crustacean muscles   总被引:7,自引:6,他引:1       下载免费PDF全文
Known phasic and tonic muscle fibers of the crab Cancer magister were studied by electron microscopy. Phasic fibers have sarcomeres about 4.5 µ long, small polygonal myofibrils, and a well-developed sarcoplasmic reticulum. The thick myofilaments, disposed in hexagonal array, are each surrounded by six thin filaments. The tonic fibers have a sarcomere length of about 12 µ, larger myofibrils, a poorly developed sarcoplasmic reticulum, and a disorderly array of myofilaments. Each thick myofilament is surrounded by 10–12 thin filaments. The same morphological type of slow muscle has been found in the crustaceans, Macrocyclops albidus, Cypridopsis vidua, and Balanus cariosus, in each case in an anatomical location consistent with tonic action. A search of the literature indicates that this type of muscle is found in all classes of arthropods and is confined to visceral and postural muscles or specializations of these.  相似文献   

14.
Summary The endocardium of Oniscus asellus L. and Asellus aquaticus L. consists of lipid cells. The epicardium consists of a layer of cells with a vesiculated cytoplasm covered by a thick extracellular fibrous sheet. The myocardium is a single layer of cells, the sarcolemma invaginates at Z disc level forming transverse tubules, and longitudinal tubules branch off from these. At the A-I level' longitudinal tubules form transverse systems, which form couplings with the sarcoplasmic reticulum. The sarcoplasmic reticulum appears as perforated sheets enveloping the myofibrils. Two types of nerve terminal are found: one is embedded in a myocardial cell process, the other lies in a myocardial cell depression. They contain clear and dense-cored synaptic vesicles.This work was supported by grants from the Norwegian Research Council for Science and the Humanities  相似文献   

15.
The distribution of calsequestrin in rat atrial and ventricular myocardial cells was determined by indirect immunocolloidal gold labeling of ultrathin frozen sections. The results presented show that calsequestrin is confined to the sarcoplasmic reticulum where it is localized in the lumen of the peripheral and the interior junctional sarcoplasmic reticulum as well as in the lumen of the corbular sarcoplasmic reticulum, but absent from the lumen of the network sarcoplasmic reticulum. Comparison of these results with our previous studies on the distribution of the Ca2+ + Mg2+-dependent ATPase of the cardiac sarcoplasmic reticulum show directly that the Ca2+ + Mg2+-dependent ATPase and calsequestrin are confined to distinct regions within the continuous sarcoplasmic reticulum membrane. Assuming that calsequestrin provides the major site of Ca2+ sequestration in the lumen of the sarcoplasmic reticulum, the results presented support the idea that both junctional (interior and peripheral) and specialized nonjunctional (corbular) regions of the sarcoplasmic reticulum are involved in Ca2+ storage and possibly release. Furthermore, the structural differences between the junctional and the corbular sarcoplasmic reticulum support the possibility that Ca2+ storage and/or release from the lumen of the junctional and the corbular sarcoplasmic reticulum are regulated by different physiological signals.  相似文献   

16.
Localization of calsequestrin in chicken ventricular muscle cells was determined by indirect immunofluorescence and immuno-Protein A-colloidal gold labeling of cryostat and ultracryotomy sections, respectively. Calsequestrin was localized in the lumen of peripheral junctional sarcoplasmic reticulum, as well as in the lumen of membrane-bound structures present in the central region of the I-band, while being absent from the lumen of the sarcoplasmic reticulum in the A-band region of the cardiac muscle cells. Since chicken ventricular muscle cells lack transverse tubules, the presence of calsequestrin in membrane bound structures in the central region of the I-band suggests that these cells contain nonjunctional regions of sarcoplasmic reticulum that are involved in Ca2+ storage and possibly Ca2+ release. It is likely that the calsequestrin containing structures present throughout the I-band region of the muscle cells correspond to specialized regions of the free sarcoplasmic reticulum in the I-band called corbular sarcoplasmic reticulum. It will be of interest to determine whether Ca2+ storage and possibly Ca2+ release from junctional and nonjunctional regions of the sarcoplasmic reticulum in chicken ventricular muscle cells are regulated by the same or different physiological signals.  相似文献   

17.
The flight-related tergo-coxal muscles of flying and flightless beetles are compared. In the flying beetle, Pachynoda sinuata, the myofibrils and cylindrical and the myofilaments packed in double hexagonal arrays. The sarcomeres are short (2.8 micrometer) and wide with many large, closely packed adjacent mitochondria but the sarcoplasmic reticulum is poorly developed in this fibrillar (asynchronous) muscle. Sarcoplasmic glycogen in rosette form is abundant. In the flightless beetle, Anthia thoracica, the myofibrils are lamellar-like with sarcomeres of 5.3 micrometer. The myosin filaments form a single hexagonal array each thick filament having an orbital of 11 to 12 thin filaments. The width of the Z-line (120 nm) of A. thoracia muscle was twice that of the Z-line of P. sinuata muscle. The sarcoplasmic reticulum and T-system are well-developed in this afibrillar (synchronous) muscle. Few glycogen granules are present. Triangular projections of the sarcolemma occur regularly opposite the Z-lines in A. thoracica and they appear to extend into the Z-lines. Membranous connections joint adjacent Z-lines in A. thoracica and occasionally in P. sinuata.  相似文献   

18.
Summary The membrane systems of the cardiac muscle cell of the amphipod Tmetonyx cicada (O. Fabricius) are described. The sarcolemma invaginates and forms a transverse network of tubules at the level of the Z band. Narrow longitudinal tubules branch from the network and connect to another transverse network of tubules at the H band level, where dyadic and triadic junctions are formed with the sarcoplasmic reticulum. Adjacent myofibrils are normally separated by a well developed double layer of the sarcoplasmic reticulum. In areas where the myofibrils closely approach the outer sarcolemma, peripheral couplings have been found at the level of the H band.  相似文献   

19.
The ultrastructural features of cardiac muscle cells and their innervation were examined in the tarantula spider Eurypelma marxi Simon. The cells are transversely striated and have an A band length of about three microns. H zones are indistinct and M lines are absent. Thick and thin myofilament diameters are approximately 200 and 70 Å respectively. Eight to 12 thin filaments usually surround each thick one. Accumulations of thick and thin myofilaments occur perpendicular to the bulk of the myofilaments in some cells. The Z line is discontinuous and thick filaments may pass through the spaces in the Z line. Extensive systems of sarcoplasmic reticulum and transverse tubules are present; these form numerous dyadic junctions in both A and I band regions. Sarcolemmal invaginations form Z line tubules; lateral extensions of the plasma membrane portion of these invaginations form dyads. Nerve branches of the cardiac ganglion make multiple neuromuscular synapses with at least some of the cardiac muscle cells. Both large granular and small agranular vesicles are present in the presynaptic terminals. Intercalated discs similar to those present in other arthropod hearts occur between the ends of adjacent cardiac muscle cells.  相似文献   

20.
Muscles in the body wall, intestinal wall, and contractile hemolymphatic vessels (pseudohearts) of an oligochaete anelid (Eisenia foetida) were studied by electron microscopy. The muscle cells in all locations, except for the outer layer of the pseudohearts, are variants of obliquely striated muscle cells. Cells comprising the circular layer of the body wall possess single, peripherally located myofibrils that occupy most of the cytoplasm and surround other cytoplasmic organelles. The nuclei of the cells lie peripherally to the myofibrils. The sarcomeres consist of thin and thick myofilaments that are arranged in parallel arrays. In one plane of view, the filaments appear to be oriented obliquely to Z bands. Thin myofilaments measure 5–6 nm in diameter. Thick myofilaments are fusiform in shape and their width decreases from their centers (40–45 nm) to their tips (23–25 nm). The thin/thick filament ratio in the A bands is 10. The Z bands consist of Z bars alternating with tubules of the sarcoplasmic reticulum. Subsarcolemmal electron-dense plaques are found frequently. The cells forming the longitudinal layer of the body wall musculature are smaller than the cells in the circular layer and their thick filaments are smaller (31–33 nm centrally and 21–23 nm at the tips). Subsarcolemmal plaques are less numerous. The cells forming the heart wall inner layer, the large hemolymphatic vessels, and the intestinal wall are characterized by their large thick myofilaments (50–52 nm centrally and 27–28 nm at the tips) and abundance of mitochondria. The cells forming the outer muscular layer of the pseudohearts are smooth muscle cells. These cells are richer in thick filaments than vertebrate smooth muscle cells. They differ from obliquely striated muscle cells by possessing irregularly distributed electron-dense bodies for filament anchorage rather than sarcomeres and Z bands and by displaying tubules of smooth endoplasmic reticulum among the bundles of myofilaments. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号