首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In animal‐pollinated plants, both the spatial distribution of flowering individuals and the number of flowers that an individual displays affect pollen deposition rates and female reproductive success. Heterostylous species are likely to be particularly sensitive to the contingencies of spatial distribution, as they are reproductively subdivided into distinct mating groups, which usually exhibit self‐ and intra‐morph incompatibility and differ in floral morphology. In this paper, we explore the joint effects of both spatial distribution of potential mates and floral display size on morph‐specific pollen deposition rates and seed set patterns in two natural populations of Pulmonaria officinalis, a distylous species with a weak self‐incompatibility system. Both total stigmatic pollen load and the proportion of legitimate pollen decreased with increasing spatial isolation. Legitimate (intermorph) pollen transfer was, however, asymmetric and decreased more rapidly with decreasing proximity to a compatible legitimate mating partner in the S‐morph than in the L‐morph. Total stigmatic pollen loads per flower increased with increasing floral display size, indicating that large plants are disproportionately more visited than smaller individuals. However, because legitimate pollen deposition decreased with increasing floral display size, these results also suggest that larger numbers of flowers increase the degree of geitonogamous pollination. In both the L‐ and S‐morph, seed set significantly decreased with increasing isolation from a legitimate mating partner, but in the L‐morph seed set was less dependent on the spatial distribution of the S‐morph. In addition, seed set significantly increased with floral display size in the L‐morph, but not in the S‐morph. These findings indicate that the spatial distribution of potential mates and variation in floral display size may cause morph‐specific differences in pollen deposition rates and female reproductive success.  相似文献   

2.
3.
In distylous, self-incompatible plants, clonal propagation, unbalanced floral morph frequencies, and reduced population size can interfere with the functioning of distyly by compromising legitimate intermorph pollinations, resulting in reduced reproductive output. Here, we examined the mating system and the impact of mate availability, population size, and spatial aggregation of morphs on reproductive output in the distylous, clonal, aquatic plant Hottonia palustris. Controlled pollinations under greenhouse conditions detected no spontaneous selfing without the action of a pollen vector (autonomous autogamy) and demonstrated very low fruit and seed development after self-pollination. Intermorph (legitimate) crossings resulted in high reproductive output in both floral morphs (long- and short-styled individuals), whereas intramorph (illegitimate) crossings decreased fruit and seed development by more than 50%, indicating that the species has partial intramorph-incompatibility. In natural populations, small population size and increasing deviation of floral morph frequencies negatively affected reproductive outcome. Individuals of the majority morph type developed significantly fewer fruit and seeds than individuals of the minority morph type. This rapid decline in fecundity was symmetrical, indicating that regardless of which morph was in the majority, the same patterns of negative frequency-dependent mating occurred. Increasing spatial isolation between compatible morphs significantly reduced fruit and seed set in both morphs similarly. This study provides clear indications of frequency- and context-dependent mating in natural populations of a distylous plant species.  相似文献   

4.
5.

Background and Aims

In heterostylous plant species, skewed morph ratios are not uncommon and may arise from a range of factors. Despite the recognized importance of skewed morph ratios on overall reproductive success within populations, little is known about the impact of skewed morph ratios on population genetic diversity and differentiation in heterostylous species. This study specifically aimed to clarify the effect of population size and morph bias on population genetic diversity and differentiation in the temperate forest herb Pulmonaria officinalis. This species is characterized by a distylous breeding system and shows morph-specific differences in reproductive success.

Methods

Genetic diversity was determined for 27 P. officinalis populations in northern Belgium by using eight recently developed microsatellite markers. Multiple regressions were used to assess the relationship between genetic diversity, morph bias and population size, and FST-values were calculated for short- and long-styled morphs separately to study genetic differentiation as a function of morph type.

Key Results

For all genetic measures used, morph bias was more important in explaining patterns of genetic diversity than population size, and in all cases patterns of population genetic diversity followed a quadratic function, which showed a symmetrical decrease in genetic diversity with increasing morph bias. However, probably due to the reproductive advantage of L-morphs relative to S-morphs, maximum genetic diversity was found in populations showing an excess of L-morphs (60·7 % L-morph). On the other hand, no significant difference in pairwise genetic distances between populations was observed between L- (0·107) and S-morphs (0·106).

Conclusions

Our results indicate that significant deviations from equal morph ratios not only affect plant reproductive success but also population genetic diversity of heterostylous plant species. Hence, when defining conservation measures for populations of heterostylous plant species, morph ratios should be considered as an important trait affecting their long-term population viability.  相似文献   

6.
Shang H  Luo YB  Bai WN 《Molecular ecology》2012,21(15):3869-3878
Populations of Acer species often contain more than three sex phenotypes with complex sexual polymorphism including duodichogamy, protandry and protogyny. We identified the mechanisms that maintain sexual polymorphism in Acer pictum subsp. mono, a temperate tree from northern China, by investigating maternal mating patterns and male reproductive success. We used paternity analyses to estimate rates of outcrossing and disassortative mating, as well as male outcrossed siring success, in a population of A. pictum subsp. mono with uneven sex phenotype ratios (duodichogamous 69.1%, protandrous 19.6%, protogynous 11.3%). We used a pollen‐transfer model to investigate whether the unequal ratios of sex phenotypes could be explained by the observed patterns of mating. Most progeny resulted from outcrossing, particularly disassortative among the sex phenotypes. Although the duodichogamous phenotype showed a significant amount of intraphenotypic mating, the frequency did not exceed that of disassortative mating. We detected no significant differences in male outcrossed siring success among the sex phenotypes. The pollen‐transfer model demonstrated that sex phenotype ratios could be maintained by the observed mating pattern in the population. Our results indicate that disassortative mating among the sex phenotypes can maintain sexual polymorphism in A. pictum subsp. mono and that ratios biased towards duodichogamy can result from frequent intraphenotypic mating in this phenotype.  相似文献   

7.
Pollination efficiency and reproductive success vary strongly among populations of most animal‐pollinated plant species, depending on their size and local density, whereas individual plants within populations experience varying levels of reproductive output as a result of differences in floral display. Although most orchid species have been shown to be severely pollination limited, few studies have investigated the impact of the above‐mentioned factors on pollination success and reproduction, especially in rewarding species. In this study, the impact of population size, local density of flowering plants, and floral display on the rates of pollinia export and fruit production was investigated in 13 natural populations of the rewarding terrestrial orchid Listera ovata. In addition, an emasculation experiment was set up to examine how floral display and local density of flowering plants affected the relative importance of cross‐ vs. geitonogamous pollination in determining fruit set. In the studied populations, pollination efficiency, pollen removal, and fruit set increased with increasing population size until a threshold value of 30–40 flowering plants was reached, above which pollination efficiency and reproductive output decreased again. On average, plants with large floral displays showed higher proportional pollinia removal and fruit set compared with smaller plants. Fruit production was also significantly and positively related to local plant density, whereas emasculation did not affect the relationship between local plant density and fruit set, suggesting that geitonogamous pollination did not affect the outcome of female function. The results of this study are discussed in the light of the flowering mechanism of the species and its generalized pollination system. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157 , 713–721.  相似文献   

8.
9.
In sexually polymorphic plants, the spatial distribution of sexes is usually not random. Local variation in phenotype frequencies is expected to affect individual fitness of the different phenotypes. For gynodioecious species, with co-occurrence of hermaphrodites and females, if sexual phenotypes are structured in space and pollen flow is spatially restricted, local pollen availability should vary among patches. Female fitness may thus be low when hermaphrodites are locally rare. To test this hypothesis, we analysed how the reproductive output of females varied among patches within two natural study sites of the gynodioecious wind-pollinated Beta vulgaris ssp. maritima. Plants growing in female-biased areas and experiencing pollen limitation were found to have low fruit and seed sets but did not reallocate resources towards better offspring. Our results show that fine-scale processes influence individual fitness and the evolution of sex ratio in sexually polymorphic plants.  相似文献   

10.
I investigated the mating systems and phenotypic variation of two sympatric spring ephemerals, Trillium erectum and T. grandiflorum (Liliaceae), and phenotypic selection acting through female reproductive success for 11 morphological characters in five sympatric populations of the two species. I examined the degree of self-compatibility, pollinator-visitation rates, and pollen limitation of fruit and seed production in both species. Both Trillium species were self-compatible, but outcrossed flowers produced more successful fruits and seeds than self-pollinated flowers. Pollinator-visitation rates to the two species were low compared to other insect-pollinated spring ephemerals. In addition, both T. erectum and T. grandiflorum experienced pollen limitation in fruit and/or seed production; however, levels of fecundity in both species may be influenced by resource availability as well. I found significant phenotypic variation in 11 morphological characters within and among the five study populations. The sizes of all morphological characters were positively correlated. In general, larger T. erectum and T. grandiflorum produced more seeds. Phenotypic selection analysis revealed that direct and indirect selection acted on the size of morphological characters for both species. But there was no detectable selection acting on plant shape. This study reveals that variation in plant size exists within and among populations of both species, and this variation is associated with variance in female reproductive success. Spatial and temporal variation in pollinator and/or resource abundance may play a role in the phenotypic variation exhibited by both Trillium species.  相似文献   

11.
Sexual conflict over mating rate is both pervasive and evolutionarily costly. For females, the lifetime reproductive fitness costs that arise through interactions with potential mates will be influenced by the frequency of such interactions, and the fitness cost of each interaction. Both of these factors are likely to be influenced by variation in operational sex ratio (OSR) and population density. Variation in OSR‐ and density‐dependent male alternative reproductive tactics (ARTs) may be particularly important if the fitness costs that females experience vary with the reproductive tactics that males express. Using a simple model, we consider several examples of OSR‐ and/or density‐dependent variation in male ARTs and the frequency of male–female interactions, and find that variation in the expression of male ARTs has the potential to augment or diminish the costs of frequent male interactions for females. Accurately documenting variation in the expression of male ARTs and associated female fitness costs will benefit future work in this area.  相似文献   

12.
BACKGROUND AND AIMS: Distyly has been hypothesized to promote cross-pollination by reducing intrafloral and geitonogamous self-pollination, and enhancing intermorph pollination. Distylous plants typically display both reciprocal herkogamy and a heteromorphic incompatibility system, which allows mating only between morphs. Distyly and its pollination consequences were examined in two Pentanisia species with long-tubed flowers which are pollinated almost exclusively by butterflies. METHODS: Anther and stigma heights were measured to quantify reciprocal herkogamy. The type of incompatibility system was determined by observing pollen tubes and seed production following controlled hand pollination. Pollen loads on pollinators and stigmas were also examined to assess the efficiency of intermorph pollen flow. KEY RESULTS: Pentanisia prunelloides and P. angustifolia exhibit reciprocal herkogamy and a host of ancillary dimorphisms, including pollen colour, exine sculpturing, stigmatic papilla shape and floral-tube pubescence. Controlled hand-pollinations revealed the presence of a strong heteromorphic incompatibility system in both species. The site of incompatibility differed between the morphs; intramorph pollen tubes were blocked in the style of the short-styled morph and on the stigmatic surface of the long-styled morph. Butterflies carried pollen from the short- and long-styled morphs primarily on their head and proboscis, respectively. Natural pollination resulted in a higher proportion of pollen transfer from long- to short-styled plants than vice versa. Nevertheless, fruit set did not differ between morphs. CONCLUSIONS: Both Pentanisia species are fully distylous. Reciprocal herkogamy results in pollen from the two morphs being carried on different locations on pollinators' bodies, which in turn promotes intermorph pollination. Intramorph pollination does not result in fertilization, because of an effective heteromorphic incompatibility system.  相似文献   

13.
In plant populations where reproductive output is limited by pollinator visitation, plants with attractive floral displays should have a selective advantage. We examined the effect of inflorescence height on pollination success in Primula farinosa, which is dimorphic for scape length. To test the hypothesis that fruit and seed initiation are more strongly pollen-limited in the short-scaped than in the long-scaped morph, and that this difference is affected by spatio-temporal variation in pollen limitation, we conducted a hand-pollination experiment in four populations over 2 yr. Pollen limitation of fruit initiation varied among populations and years, and was stronger in the short-scaped than in the long-scaped morph. The results suggest that interactions with pollinators will need to be considered for a full understanding of the maintenance of this striking polymorphism. The study also shows that, although pollen limitation is likely to vary in space and time in many plant species, such variation is not necessarily associated with variation in selection on floral characters.  相似文献   

14.

Background and Aims

The number of flowers blooming simultaneously on a plant may have profound consequences for reproductive success. Large floral displays often attract more pollinator visits, increasing outcross pollen receipt. However, pollinators frequently probe more flowers in sequence on large displays, potentially increasing self-pollination and reducing pollen export per flower. To better understand how floral display size influences male and female fitness, we manipulated display phenotypes and then used paternity analysis to quantify siring success and selfing rates.

Methods

To facilitate unambiguous assignment of paternity, we established four replicate (cloned) arrays of Mimulus ringens, each consisting of genets with unique combinations of homozygous marker genotypes. In each array, we trimmed displays to two, four, eight or 16 flowers. When fruits ripened, we counted the number of seeds per fruit and assigned paternity to 1935 progeny.

Key Results

Siring success per flower declined sharply with increasing display size, while female success per flower did not vary with display. The rate of self-fertilization increased for large floral displays, but siring losses due to geitonogamous pollen discounting were much greater than siring gains through increased self-fertilization. As display size increased, each additional seed sired through geitonogamous self-pollination was associated with a loss of 9·7 seeds sired through outcrossing.

Conclusions

Although total fitness increased with floral display size, the marginal return on each additional flower declined steadily as display size increased. Therefore, a plant could maximize fitness by producing small displays over a long flowering period, rather than large displays over a brief flowering period.  相似文献   

15.
Subdioecy is thought to occupy a transitional position in the gynodioecy–dioecy pathway, explaining one of the evolutionary routes from hermaphroditism to dioecy. Quantifying any female reproductive advantage of females versus hermaphrodites is fundamental to examining the spectrum between subdioecy and dioecy; however, this is challenging, as multiple interacting factors, such as pollen limitation and resource availability, affect plant reproduction. We compared the female reproductive success of females and hermaphrodites via a field experiment in which we hand‐pollinated individuals of the subdioecious shrub Eurya japonica of similar size growing under similar light conditions. Effects of pollen limitation and seed quality were also evaluated through comparing the results of hand‐ and natural‐pollination treatments and performing additional laboratory and greenhouse experiments. Overall, females had higher fruit set and produced heavier fruit and more seeds than hermaphrodites, and these results were more pronounced for hand‐pollinated than for natural‐pollinated plants of both sexes. We also found that seeds naturally produced by females had a higher mean germination rate. These results indicate that females had a pronounced advantage in female reproductive success under conditions of no pollen limitation. The sexual difference in the degree of pollen limitation suggests a pollinator‐mediated interaction, whereas the higher female reproductive success of females even under natural conditions implies that Ejaponica is a good model species for elucidating the later stages of the gynodioecy–dioecy pathway.  相似文献   

16.
An enduring puzzle in gynodioecious species is the great variation in female frequency seen among populations. We quantified sex ratio in 44 populations of gynodioecious Kallstroemia grandiflora. Then, we measured pollinator visitation, pollen deposition, autonomous selfing rate and pollen limitation of females. Finally, using experimental populations, we tested whether female fitness responds to the frequency of female plants. We found broad variability in sex ratio among populations (0-44% female). Hermaphrodite flowers received more pollinator visits and pollen grains than females, and bagged hermaphrodite flowers produced fruits. However, we found no evidence of pollen limitation in females. In experimental populations, female plants showed no evidence of frequency-dependent pollinator visitation, fruit set, seed set or total seed mass. These results do not support frequency-dependent variation in fitness as a major mechanism affecting female frequencies in K. grandiflora. Within the context of this study, pollinators are abundant and pollinator movement appears to operate at a large enough scale to overcome the potential reproductive disadvantages of producing solely female flowers.  相似文献   

17.
Outbreeding confers an evolutionary advantage, and flowering plants have evolved a variety of contrivances for its maximization. However, neither fruit set nor seed set is realized to its fullest potential for a variety of reasons. The causes of low flower to fruit and seed to ovule ratios were investigated in naturally occurring bael trees (Aegle marmelos) at two sites for three seasons. The study established that the mass effect of synchronized flowering attracted a variety of insect pollinators to the generalist flowers; Apis dorsata was the most efficient pollinator. The seed to ovule ratio was low despite high natural pollination efficiency (c. 2400 pollen per stigma). Although pollination‐induced structural and histochemical changes in the style allowed many (9.5 ± 2.1) pollen tubes to grow, only cross‐pollen tubes could grow through the style. Gametophytic self‐incompatibility, manifested in the stylar zone, resulted in a significantly slower growth rate of self‐pollen tubes. The occurrence of obligate self‐incompatibility, coupled with increased self‐pollen deposition (geitonogamy), caused a significant number of flowers to abort. Fruit retention in the trees declined from 40% to 12% as a result of abortion of fruits at different stages of development. The number of mature fruits on a tree was negatively correlated (r = ?0.82) with their size. It is inferred that low natural fecundity in A. marmelos is primarily a result of obligate self‐incompatibility and strong post‐fertilization maternal regulation of allocation of resources to the developing fruits. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 572–585.  相似文献   

18.
Intraspecific variation in pollen deposition and number of pollen tubes per style is rarely quantified, but is essential for assessing the occurrence of pollen limitation and pollen competition and their evolutionary implications. Moreover, pollen deposition, pollen tube growth, and the fate of fertilized ovules are rarely distinguished in field studies. Here we present such a study in eight natural populations of Prunella grandiflora. We quantified microgametophyte population sizes and inferred pollen limitation when the number of fertilizable ovules exceeded pollen tubes, and assessed seed set and fate after open pollination. Two and three populations had on average significantly fewer pollen grains and pollen tubes per flower, respectively, than the fixed number of fertilizable ovules per fruit, while one population experienced significant pollen competition. Style length was positively correlated with the number of pollen tubes. While pollen availability was very variable, seed abortion was significantly less frequent in denser populations, and in one population the proportion of well-developed seeds was significantly, positively correlated with the number of pollen tubes in the style. Less pollen deposition, lower numbers of pollen tubes reaching the base of the style, lower pollen quality and therefore increased abortion of fertilized ovules can all reduce seed set in natural P. grandiflora stands. Substantial intraspecific variability implies that microgametophyte competition also occurs in this species. Finally, style morphology may affect pollen receipt.  相似文献   

19.
In theory, unisexual taxa have an advantage over ecologically similar bisexual species because unisexuals produce twice as many daughters and, thus, should quickly outcompete coexisting bisexuals in any given population. For sperm‐dependent unisexual (gynogenetic) species, stable coexistence with their bisexual sperm donors can be postulated if male mate choice puts unisexual females at a disadvantage through sperm limitation, thus halving their reproductive output compared to bisexuals (‘behavioural regulation hypothesis’). We tested for a potential life‐history signature of male mate choice in a system of coexisting bisexual sailfin mollies (Poecilia latipinna) and gynogenetic Amazon mollies (Poecilia formosa). Specifically, we gave P. latipinna males an opportunity to freely interact (and mate) with both types of females and, after 25 days, quantified the proportion of (1) females with sperm in their genital tract and (2) pregnant females. A higher proportion of P. latipinna females (53.7%) had sperm in their genital tract (compared to only 25.9% in P. formosa), corroborating a previous study on wild‐caught fish. This translated into a higher frequency (42.6%) of P. latipinna females being pregnant (compared to 29.6% in P. formosa); however, among pregnant females, no significant differences between species in reproductive life‐history traits (such as offspring number or size) were uncovered. Hence, although the findings of the present study confirm that male discrimination against unisexual females leads to reduced reproductive output in unisexuals, the observed magnitude of differences in targeted life histories between the two types of females is unlikely to be the sole factor regulating stable coexistence in this system. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 598–606.  相似文献   

20.
Darwin proposed that the driving force for the evolution of style polymorphisms is the promotion of cross‐pollination between style morphs, through accurate placement of pollen on the pollinator’s body. This hypothesis has received much attention, but the effect of different pollinators in the fitness of morphs remains poorly understood. Narcissus papyraceus is a style dimorphic species (long ‐L‐ and short ‐S‐ styled) with isoplethic (1 : 1) and L‐monomorphic populations, mainly visited by long‐tongued (LT) nocturnal and short‐tongued (ST) diurnal pollinators, respectively. We studied natural female fertility of morphs, and assessed the role of diurnal and nocturnal pollinators. We also quantified female fertility of the morphs in experimental populations with different morph ratio, exposed to predominately long‐ or short‐tongued pollinators. We found that with LT pollinators, both morphs were successfully pollinated in all morph ratio conditions, suggesting that these insects could be involved in maintenance of the polymorphism, although other factors may also play a role. However, with ST pollinators, S‐plants displayed less fertility than L‐plants, and mating among L‐plants was favoured, implying that the polymorphism is lost. These results underscore the role of pollinators on variations in style polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号